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ABSTRACT

This technical report describes our submission system for task 3
of the DCASE2024 challenge: Sound Event Localization and De-
tection with Source Distance Estimation. Our experiment specifi-
cally focused on analyzing the first-order ambisonics (FOA) dataset.
Building upon our previous work, we utilized a three-stage network
structure known as the Multi-scale Feature Fusion (MFF) module.
This module allowed us to efficiently extract multi-scale features
across the spectral, spatial, and temporal domains. In this report,
we introduce the implementation of the MFF module as the encoder
and Conformer Blocks as the decoder within a single-branch neu-
ral network named MFF-Conformer. This configuration enables us
to generate Multi-ACCDOA labels as the output. Compared to the
baseline system, our approach exhibits significant improvements in
F20◦ and DOAE metrics and demonstrates its effectiveness on the
development dataset of DCASE task 3.

Index Terms— sound event localization and detection, multi-
scale feature fusion

1. INTRODUCTION

Sound Event Localization and Detection (SELD) aims to use mul-
tichannel sound recordings to detect the onset and offset of sound
events within specific target classes and estimate their direction of
arrival (DoA). Its applications cover various fields, including smart
homes, surveillance systems, and human-computer interaction.

Since its introduction in the Detection and Classification of
Acoustic Scenes and Events (DCASE) challenge as task 3, deep
neural network (DNN) based methods have been extensively ex-
plored [1]. Initially, the convolutional recurrent neural network
(CRNN) was commonly used for the SELD task. To improve
the network’s performance, researchers began incorporating ResNet
and Conformer architectures [2, 3]. Subsequently, researchers fo-
cused on modeling the relationship between the spectral, spatial,
and temporal domains. For instance, the CST-former [4] introduced
distinct attention mechanisms to process channel, spectral, and tem-
poral information independently. Recently, Zheng et al. proposed
Spatial-AST [5], which was the first work to use the audio spectro-
gram transformer (AST) [6] for studying spatial audio. However,
this year’s challenge differs from previous ones in that it requires es-
timating the source distance, which significantly increases the task’s
difficulty.
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Figure 1: MFF-Conformer network architecture.

In our previous work, we introduced the Multi-scale Feature
Fusion (MFF) module[7], which effectively extracts multi-scale
features across spectral, spatial, and temporal information. In this
report, we present a novel approach called MFF-Conformer, which
leverages the MFF module as encoders and integrates Conformer
Blocks [8] as decoders. MFF-Conformer takes log-mel spectrogram
and intensity vectors (IVs) as input features and generates Multi-
ACCDOA labels. Within the MFF module, we employ a parallel
subnetwork architecture combined with a TF-Convolution module
(TFCM) [9]. This design enables efficient feature extraction by cap-
italizing on the strengths of each subnetwork. Furthermore, we em-
ploy repeated multi-scale fusion to enhance the representation of
the subnetworks, thereby further improving the feature extraction
performance. These methods help to increase the robustness and
generalization capabilities of our system. As a result of these ad-
vancements, our system yields a significant improvement in F20◦

and DOAE metrics over the baseline system, demonstrating its ef-
fectiveness for the SELD task.
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Figure 2: An illustration of the details of the MFF module. C, T, and F are the dimension sizes of channel, time, and frequency, respectively.
“1×”, “4×”, and “16×” represent different scales of feature maps. “freq down.” and “freq up.” refer to frequency downsampling (FD) and
frequency upsampling (FU), respectively.

2. PROPOSED METHOD

2.1. Input Features

In our approach, we specifically select audio files in the first-order
ambisonics (FOA) format. From the FOA data, we extract two
types of features: 4-channel log-mel spectrograms and 3-channel
IVs. These two features are then combined to create a 7-channel
feature, which serves as the input for our model.

2.2. Network Architecture

Our MFF-Conformer network architecture is depicted in Figure 1,
and the details of the MFF module can be found in Figure 2. Ini-
tially, we input the feature maps with 7 channels into a convolu-
tion block (Conv), which preserves the dimensions of T (number of
time frames) and F (number of frequencies) while transforming the
channel dimension to 64. The resulting feature maps are then fed
into the MFF module to comprehensively extract multi-scale spec-
tral, spatial, and temporal information. To ensure the MFF module
retains the original information and avoids extracting irrelevant fea-
tures, we establish a residual connection between the output of the
MFF module and the initial Conv. Subsequently, Conv, MaxPool,
and Dropout operations are employed to further encode deeper in-
formation within the network. For the decoder, we utilize Con-
former Blocks, which integrate convolution layers and multi-head
self-attention (MHSA) mechanisms. This integration allows for the
extraction of both local and global time context information from
the feature sequence simultaneously. Finally, the fully connected
(FC) layers generate Multi-ACCDOA labels as the output of our
system.

3. EXPERIMENTS

3.1. Dataset

We conducted training and evaluation of our approach using the
STARSS23 dataset[10]. This dataset consists of thirteen sound
event classes and includes two types of multichannel array sig-
nals: FOA and tetrahedral microphone array signals. Our model

was trained exclusively on FOA array signals, which consist of
four channels: an omnidirectional channel (w) and three direc-
tional channels (x, y, and z). In addition to the original dataset,
we enriched our training data by incorporating synthetic data[11],
enhancing the diversity and robustness of our model.

3.2. Experimental setup and Evaluation Metrics

We follow the same audio feature extraction process as the base-
line approach. The audio is sampled at a frequency of 24kHz, and
we utilize 64 Mel filters for feature extraction. We apply the Short-
Time Fourier Transform (STFT) with a frame length of 40ms and
a frame hop of 20ms. The input length is set to 250 frames. For
optimization, we employ the Adam optimizer. The batch size is
set to 16, and the model is trained for 100 epochs. The learning
rate is set to 0.0001. To evaluate the performance of our SELD
system, we utilize the official metrics[12] recommended for the
DCASE challenge. These metrics include the location-dependent
F1-score (F20◦ ), class-dependent direction of arrival error (DOAE),
and class-dependent relative distance error (RDE).

Table 1: Experimental results of the audio-only SELD system for
the development dataset using FOA format data.

Model macro F20◦ (%) DOAE(°) RDE(%)

Baseline 13.1 36.9 33
Ours 19.0 27.5 39

3.3. Experiment Results

Table 1 illustrates the performance of our proposed method on the
development dataset. Our model showcases impressive competence
in macro F20◦ and DOAE metrics. Particularly, it displays a note-
worthy enhancement of 5.9% in F20◦ and 9.4◦ in DOAE compared
to the baseline. However, it falls short in terms of RDE, exhibiting
a disadvantage of 6% compared to the baseline.
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4. CONCLUSION

In this report, we present our approach for task 3 of DCASE2024.
We propose MFF-Conformer, which incorporates a multi-scale fea-
ture fusion mechanism and Conformer Blocks into the SELD sys-
tem. Through our experiments and evaluations, we demonstrate that
our proposed system frameworks outperform the baseline approach.
These results indicate the effectiveness and superiority of our ap-
proach in improving the performance of SELD.
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