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ABSTRACT
In this work, we present our submission system for DCASE
2024 Task4 on Sound Event Detection with Heterogeneous Train-
ing Dataset and Potentially Missing Labels, where we introduce
the BEATs-CRNN interactive systems. Considering that the pre-
trained BEATs model predominantly captures global features for
the dataset, while the CRNN model focuses on learning local fea-
tures, this work aims to fuse the middle layer information of the two
to enhance the system’s feature extraction capabilities. Firstly, we
modify the BEATs model and the CRNN model so that the feature
extraction of the dataset by the two models is performed at the same
stage. Secondly, due to the differing number of layers in CNN and
BEATs, we extract intermediate features from both models at reg-
ular intervals, interact them through cross-attention, and then feed
the resulting features back to the respective models for the feature
extration in the subsequent layer. Finally, the final interaction re-
sults of the two models are used as the final features for learning.
Compared to the baseline system using BEATs embeddings, which
achieved 48.3% in PSDS-scenario 1, 49.4% in PSDS-scenario1 (sed
score), and 73.7% in mean-pAUC, our BEATs-CRNN interactive
system achieves 53.2%, 54.1%, and 76.3%, respectively. The en-
semble of the BEATs-CRNN interactive system further improves
the PSDS-scenario 1 to 56.4%, the PSDS-scenario1 (sed score) to
57.4% and the mean-pAUC to 75.6%.

Index Terms— BEATs, CRNN, Cross attention

1. INTRODUCTION

Sound event detection (SED), pivotal for various applications
such as aiding the hearing impaired, smart environments[1],
audio-to-text retrieval[2], voice activity detection[3][4], and audio
captioning[5], relies heavily on neural network architectures like
convolutional neural networks (CNNs)[6], convolutional recurrent
neural networks (CRNNs)[7], and transformers[8]. These sophisti-
cated approaches underscore the versatility and significance of SED
in diverse domains, emphasizing the continual evolution and adop-
tion of advanced neural network methodologies. This task, as a
follow-up to Tasks 4A and 4B in 2023, aims to unify the settings of
these two subtasks by addressing the challenge of providing event
classes and event time boundaries in audio recordings where multi-
ple events may overlap, while also exploring how to leverage train-
ing data with varying annotation granularities, encompassing tem-
poral resolution and soft/hard labels.

While supervised learning necessitates a substantial volume
of data with precise labels, the manual annotation process is pro-

hibitively costly, leading to challenges in acquiring high-quality
datasets. To address this issue, various semi-supervised learning
techniques have emerged, leveraging weakly labeled data and par-
tially labeled datasets[9][10]. Weakly labeled data typically lacks
event timestamps, while unlabeled datasets offer no informative
labels. In the realm of semi-supervised learning, pseudo-labeling
strategies are commonly employed to handle datasets with incom-
plete labeling. Researchers have proposed innovative frameworks
like the mean teacher (MT) for SED[11], which combines super-
vised training on labeled data with self-supervised training on both
labeled and unlabeled data. The MT framework utilizes a teacher
model for predictions, calculating loss between teacher and student
predictions to enhance pseudo-labeling accuracy.

Traditional mean teacher methods can encounter substantial
difficulties when providing imprecise predictions for unlabeled
data.To enhance the stability and robustness of the self-supervised
method, we have adopted the Confidence Mean Teacher (CMT)[12]
as an improvement over the unstable MT framework. Furthermore,
to facilitate improved learning of data features, we have integrated
the innovative BEATs-CRNN interactive system into the submis-
sion system for DCASE 2024 Task 4 on sound event detection with
heterogeneous training datasets and potentially missing labels. The
core concept of our approach revolves around leveraging the com-
plementary strengths of the pre-trained BEATs and CRNN models.
While the BEATs model excels at extracting global features from
the dataset, the CRNN model specializes in capturing local features.
This integration ensures comprehensive feature extraction through
a robust interaction established between the intermediate layers of
the two models.

Firstly, the BEATs and CRNN models are adjusted to synchro-
nize their feature extraction process, ensuring that both models op-
erate at the same stage of data analysis. Considering that CNN has
7 layers and BEATs has 12 layers, we decided that CNN will extract
intermediate features every other layer and BEATs every two lay-
ers. Secondly, these features are fused through the cross-attention
mechanism to promote mutual information exchange. The resulting
interactive features are fed back into the model for further feature
extraction in subsequent layers to enhance the overall feature repre-
sentation.

The culmination of this interactive process yields a set of fi-
nal features that encapsulate the combined strengths of the BEATs
and CRNN models. Compared to the baseline system utilizing
BEATs embeddings, which achieved PSDS-scenario 1 at 48%,
PSDS-scenario1 (sed score) at 49%, and a mean-pAUC of 63.7%,
our BEATs-CRNN interactive system demonstrates significant per-
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formance improvements, reaching 50.1%, 52.8%, and 76%, respec-
tively.

Moreover, by incorporating an ensemble approach with the
BEATs-CRNN interactive system, we further enhance the perfor-
mance metrics. The ensemble model elevates PSDS-scenario 1 to
56.4%, PSDS-scenario1 (sed score) to 57.4%, and the mean-pAUC
to an impressive 75.6%. This collaborative fusion of BEATs and
CRNN models not only enhances feature extraction but also under-
scores the effectiveness of interactive learning paradigms in advanc-
ing sound event detection methodologies.

2. METHODS

2.1. Interaction

The DCASE 2024 Task 4 baseline method integrates the pre-trained
BEATs model with the CRNN model, leveraging their unique
strengths in feature extraction. The BEATs model, with its 12 trans-
formation layers, is adept at capturing overarching patterns in the
dataset, emphasizing global characteristics. On the other hand, the
CRNN model excels in capturing fine-grained local features. How-
ever, the conventional approach of simply concatenating the fea-
tures from these models is considered too simplistic for effectively
merging the local and global aspects of the data.

In response to this challenge, we have developed a more sophis-
ticated strategy. By extracting the intermediate layers of both the
BEATs and CRNN models during feature extraction, we facilitate
interaction and information exchange between these models before
the learning phase begins:

InputC = softmax ((WQFB) (WKFC))WV FC (1)

InputB = softmax ((WQFC) (WKFB))WV FB (2)

where FB is the middle layer feature of beats model, FC is the
middle layer feature of CNN model, and the calculated results of
the two models are sent to the next layer of the two models for
feature extraction. InputB is the input of the next layer of BEATs
model, and InputC is the input of the next layer of CNN model,
WQ,WK and WV is the learned projection matrix.

This strategic intervention ensures that the BEATs model re-
tains access to local details, preserving fine-grained information,
while also encouraging the CRNN model to consider broader
global contexts.This intermediary interaction not only enhances fea-
ture representation but also fosters a deeper understanding of the
dataset’s complexities, potentially enhancing performance in sound
event detection tasks.

2.2. Confident Mean Teacher

Traditional mean teacher methods can encounter substantial diffi-
culties when providing imprecise predictions for unlabeled data. In
order to address the issue of inaccurate pseudo-labels, we employ
the Confidence Mean Teacher (CMT) method. The core principle of
CMT involves rectifying erroneous predictions made by the teacher
model through post-processing, thereby training the student model
with labels of high confidence.

In the CMT framework, we initially acquire clip-level and
frame-level predictions from the teacher model. These predictions
are processed based on predefined thresholds: clip-level predictions
are binary-mapped to 1 or 0 depending on the threshold, and frame-
level predictions undergo a similar classification. Following the
threshold application, we refine the frame-level predictions using

event-specific median filters. This refinement process boosts the
dependability of the pseudo-labels, reducing the student model’s
susceptibility to overfitting based on these labels.

Specifically, these procedures can be articulated as:

ỹc(k) = I(ŷc(k) > ϕc) (3)

ỹf (t, k) = MF(I(ŷc(k) > ϕc)I(ŷf (t, k) > ϕf)) (4)

where, ỹc(k) represents the clip-level output from the teacher
model, ŷc(k) denotes the clip-level prediction, ϕc stands for the
clip-level threshold, MF signifies the median filter, ϕf stands for
the frame-level threshold, ỹf (t, k) represents the frame-level output
from the teacher model, and ŷf (t, k) are the frame-level prediction
from the teacher model, respectively.

Moreover, we incorporate confidence-weighted consistency
losses based on prediction probabilities. These losses encompass
clip-level and frame-level components. By leveraging confidence
weights, we train the student model using high-confidence pseudo-
labels to mitigate the impact of inaccurate pseudo-labels during
training. The consistency losses are defined as:

Lc
con =

∑
k∈K

ϵ(ỹc(k), fθc(k)) (5)

Lf
con =

∑
t,k∈T,K

ϵ(ỹf (t, k), fθf (t, k)) (6)

where, K represents the number of sound event categories, T signi-
fies the number of frames, ϵ indicates binary cross-entropy loss, fθc
denotes the clip-level prediction of the student model, fθf denotes
the frame-level prediction of the student model.

By incorporating these advancements, the Confident Mean
Teacher (CMT) method not only bolsters the robustness of the train-
ing process but also enhances the student model’s capacity to gener-
alize effectively in diverse scenarios, ultimately improving the over-
all performance and adaptability of the sound event detection sys-
tem.

3. EXPERIMENT

3.1. Dataset

This task is based on the DESED dataset and the MAESTRO Real
dataset. DESED dataset has been used since DCASE 2020 Task 4.
DESED is composed of 10 sec audio clips recorded in domestic en-
vironments (taken from AudioSet) or synthesized using Scaper[13]
to simulate a domestic environment. DESED concentrates on 10
sound event classes, which form a subset of AudioSet. It’s impor-
tant to note that while some classes in DESED align with those in
AudioSet, there are instances where DESED groups together sev-
eral classes from AudioSet.

The second dataset, MAESTRO Real, comprises real-life
recordings, each lasting about 3 minutes and captured in vari-
ous acoustic environments.These audio recordings were annotated
through Amazon Mechanical Turk, employing a method that en-
ables the derivation of nuanced labels based on the collective opin-
ions of multiple annotators.

During evaluation, systems will undergo assessment using la-
bels of varying granularity to gain a comprehensive understanding
of their performance and assess their adaptability across diverse
applications. Given that different datasets feature distinct target
classes, it is possible that sound labels present in one dataset may
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Table 1: Performance of the BEATs-CRNN interactive system
PSDS1 PSDS1 (sed score) mean pAUC

Baseline 0.48 +- 0.003 0.49 +- 0.004 0.73 +- 0.007

Ours 0.53 +/- 0.002 0.54 +/- 0.001 0.763 +/- 0.001

Ensemble 0.56 +/- 0.002 0.57 +/- 0.001 0.756 +/- 0.003

not be annotated in another. As a result, systems must be capable
of handling potential missing target labels during training. Further-
more, SED system is required to operate without knowledge of the
origin of the audio clips during evaluation, emphasizing the need
for robust and generalized performance across varied scenarios.

3.2. Experiment setup

We train the whole system for 200 epochs and the learning rate
warms up in the first 50 epochs with the initial learning rate of
0.001. The batch size is set to 64. Each training session is deployed
on the NVIDIA RTX 3090 and lasts 37 hours The ensemble sys-
tem is composed of six BEATs-CRNN interactive systems, and it is
obtained by training the weight of each BEATs-CRNN interactive
system for the final result.

3.3. Results and submissions

Table 1 shows the performance of the commit system. The base-
line model initially used both the CRNN and BEATs models. Our
system uses BEATs-CRNN interactive and replaces MT with CMT.
This allows our BEATs-CRNN interactive system to show signif-
icant performance improvements compared to the baseline system
embedded with BEATs.This change led to improvements in PSDS1,
increasing it from 0.500 to 0.536, while PSDS-scenario1 (sed score)
increased from 0.520 to 0.543 and mean pAUC from 0.637 to 0.763

The integrated system has shown substantial improvement
across the three indicators. Specifically, the PSDS-scenario1 has
increased to 56.4%, the PSDS-scenario1 (sed score) has risen to
57.4%, and the mean-pAUC has improved to 75.6%.

4. CONCLUSION

In this study, we presented the BEATs-CRNN interactive system
for Sound Event Detection in the DCASE 2024 Task4. By inte-
grating the middle layer features of the BEATs and CRNN models,
we ensured comprehensive feature extraction. Our system outper-
formed the baseline using BEATs embeddings, achieving 50.1%,
52.8%, and 76% for different evaluation metrics. Ensemble of our
system further improved performance to 52.5% and 53.4% for dif-
ferent scenarios and 78% for mean-pAUC.
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