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ABSTRACT

This report presents our submission for Task 2 of the Detec-
tion and Classification of Acoustic Scenes and Events (DCASE)
2024 Challenge [1]. We introduce statistical strategies to build our
lightweight non-deep learning anomalous sound detection (ASD)
systems. We analyse the intrinsic statistical characteristics of ma-
chine sounds in the time-frequency domain. Then, different sta-
tistical information forms weights assigned to the frequency com-
ponents or the time bins for frequency-weighted or time-weighted
audio feature representation, resulting in frequency-weighted and
time-weighted ASD systems, respectively. Additionally, the time-
weighted system applies SMOTE for data augmentation to mitigate
domain shift, which forms an SMOTE time-frequency-weighted
ASD system. Finally, we use these systems to build an ensembled
ASD system. Experiments show that all four systems achieve better
performance than the baseline systems.

Index Terms— Anomalous sound detection, statistical learn-
ing, non-deep-learning model, audio representation, lightweight

1. INTRODUCTION

Unsupervised anomalous sound detection (ASD) focuses on identi-
fying whether the sound emitted by the target machine is anomalous
while only normal sounds are available for model training [2–4].
This is the main topic of the Detection and Classification of Acous-
tic Scenes and Events (DCASE) Challenge Task 2 [1, 5–8]. In pre-
vious DCASE Challenge Task 2, i.e., DCASE 2021 and DCASE
2022, the machine types in the development set are the same as
those in the evaluation set. Thus, these methods can adjust hyper-
parameters based on the performance of the development set.

However, relying on anomalous data to adjust the hyper-
parameters of the model is not feasible in real-world scenarios.
Consequently, first-shot unsupervised anomalous sound detection
is introduced in Task 2 of the DCASE 2023 and 2024 Challenges
[1, 2, 5]. In this case, the anomalous sounds for the target ma-
chine types are not seen during training . As a result, many ap-
proaches that depend on adjusting hyper-parameters based on the
performance of the development set are no longer applicable to first-
shot ASD.

This technical report presents the lightweight systems of Group
of Intelligent Signal Processing (GISP) based on statistical learning.
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We conduct a statistical analysis of the development set and find that
temporal energy information and frequency component information
are of significant important in distinguishing normal and anomalous
sounds. Based on this analysis and our previous work [3, 9–14],
we construct ASD systems using statistical learning to utilize the
differences in energy distribution and frequency components in the
time-frequency domain for audio feature representation to distin-
guish normal and anomalous sounds.

2. PROPOSED SYSTEMS

2.1. Energy-Weighted System

We found that there is a significant difference in energy distribution
between normal and anomalous machine sounds. According to the
description on the official website1, the test set contains both nor-
mal and anomalous audio samples. Thus, we assume that the energy
distribution difference between the test set and the training set can
reflect the difference between normal and anomalous samples. In
this case, we can highlight the difference between normal and ab-
normal sounds for anomaly detection by utilizing the energy distri-
bution differences between the training set and the test set, without
using the anomalous labels in the test set. Therefore, we introduce
a statistical strategy to learn the energy distribution difference of
the spectrogram of machine sounds as weights assigned to energy
feature points, thereby obtaining the energy-weighted audio feature
representation and build our Energy-Weighted System.

2.2. SMOTE Energy-Weighted System

Based on Energy-Weighted System, we employ SMOTE [15] to al-
leviate the domain migration problem, obtaining another system,
i.e., SMOTE Energy-Weighted System. By using SMOTE, it can
enhance the minority class in the training data to balance the num-
ber of samples between the source domain and the target domain,
thereby mitigating the domain shift and improving the anomaly de-
tection performance.

2.3. SMOTE Time-Weighted System

We employ our previous study, i.e., Time-Weighted Frequency Rep-
resentation with Gaussian Mixture Model (TWFR-GMM) [3], as
our third statistical system. It introduces a statistical time-weighted

1https://dcase.community/challenge2024/

https://dcase.community/challenge2024/
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Table 1: Performance comparison in terms of AUC-s, AUC-t and pAUC on the development dataset of DCASE 2024 Challenge Task 2.
Methods ToyCar ToyTrain Bearing Fan Gearbox Slider Valve Total

AUC-s AUC-t pAUC AUC-s AUC-t pAUC AUC-s AUC-t pAUC AUC-s AUC-t pAUC AUC-s AUC-t pAUC AUC-s AUC-t pAUC AUC-s AUC-t pAUC AUC-s AUC-t pAUC
Baseline

AE-MSE [1] 67.00 33.80 48.80 76.60 46.90 48.00 62.00 61.40 57.60 67.70 55.20 57.50 70.40 69.30 55.70 66.50 56.00 51.80 51.10 46.30 52.40 65.00 50.30 52.80
AE-MAHALA [1] 63.00 37.40 51.00 62.00 40.00 48.20 54.40 51.60 58.80 79.40 42.70 53.40 81.80 74.40 55.70 75.40 68.10 49.10 55.70 53.60 51.30 65.80 49.50 52.30
Proposed Methods

Energy-Weighted System (System-1) 55.52 34.82 49.37 75.92 46.82 50.05 53.18 59.28 58.00 75.26 42.36 51.74 82.62 80.24 61.05 88.00 83.46 78.84 76.50 70.00 56.63 70.13 54.14 56.67
SMOTE Energy-Weighted System (System-2) 55.90 35.20 49.11 74.64 49.30 50.37 53.86 64.42 58.95 79.90 31.96 52.74 83.18 80.14 60.79 89.84 85.76 80.26 73.64 71.08 53.74 70.63 52.35 56.61
SMOTE TWFR-GMM-Generated (System-3) 62.76 37.34 50.26 67.44 41.98 48.74 55.98 65.44 60.16 73.86 44.58 51.26 76.04 71.26 53.95 85.00 78.48 54.89 70.72 70.84 53.58 69.16 54.18 53.05

Ensemble (System-4) 55.46 34.86 49.37 75.90 46.92 50.05 53.30 59.60 58.16 75.54 41.80 51.84 82.70 80.24 61.00 88.06 83.58 79.05 76.40 70.08 56.58 70.18 54.10 56.71

frequency representation, which has been proven to be effective in
Task 2 of DCASE 2023 [9, 10].

As TWFR-GMM needs to choose different pooling vector
weights and the number of mixture components of GMM based on
the performance of different machine types on the development set,
which is not allowed in first-shot scenario. Therefore, in [9,10], we
use the generated anomalous machine sounds by AudioLDM [16]
to select the pooling vector weights of the TWFR-GMM for each
machine type. Following our previous studies [3, 9, 10], we build
our Time-Weighted System, where SMOTE is also adopted to miti-
gate domain shift problem.

2.4. Ensemble System [17]

Finally, to take the advantages of each system, we adopt an ensem-
ble learning strategy [17] to integrate System-1 and System-2, and
build an ensemble system. Due to the difference in machine types
between the evaluation and development sets, the system weights
selected for each machine type on the development set can not be
used on the evaluation set machines. Therefore, we empirically se-
lect the same weight for all machine types in our ensemble system.

3. EXPERIMENTS

3.1. Dataset

We conduct experiments on the dataset of DCASE 2024 Challenge
Task 2, which comprises a development dataset and an additional
dataset [1, 18, 19]. Note that, the machine types in the development
dataset are completely different from those in the additional dataset.
Our proposed systems are trained on the training set of the devel-
opment dataset and tested on the test set of the development dataset
for effectiveness validation.

3.2. Experimental Setup

For the proposed systems, the machine sound is used with its origi-
nal sampling rate of 16kHz. Log-Mel spectrogram is used with the
window size of 1024 samples, and overlapping is 50%, where the
Mel-filter is set with 128 banks.

3.3. Evaluation Metric

Following the baseline [1], we evaluate our systems using AUC-s,
AUC-t, and pAUC metrics. Here, AUC-s and AUC-t represent the
Area Under the Curve (AUC) in source and target domain, respec-
tively, and pAUC denotes the partial AUC. The total AUC-s, AUC-t,
and pAUC is computed as the harmonic mean of all machine types.

3.4. Results

We compare our systems with the baseline systems of the DCASE
2024 Challenge Task 2, i.e., AE-MSE and AE-MAHALA [1]. The

results are given in Table 1, where we can see that all of our systems
outperforms the baseline systems.

4. CONCLUSION

In this technical report, we presented our non-deep learning
lightweight systems using statistical strategies for DCASE 2024
Challenge Task 2. Our submission systems include two energy-
weighted systems, a time-weighted system, and an ensemble sys-
tem. Experiments demonstrate the effectiveness of our proposed
statistical solutions for ASD, and results show that all our systems
outperform the baseline systems.
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