
Detection and Classification of Acoustic Scenes and Events 2024 Challenge

ENHANCED UNSUPERVISED ANOMALOUS SOUND DETECTION USING CONDITIONAL
AUTOENCODER FOR MACHINE CONDITION MONITORING

Technical Report

Ronghuan Zhao1, Kelong Ren1, Liang Zou1,

1 China University of Mining and Technology, Xuzhou, China
{ronghuanzhao, klren, liangzou}@cumt.edu.cn

ABSTRACT

This report outlines our approach to first-shot unsupervised
anomalous sound detection for machine condition monitoring, de-
veloped for the DCASE 2024 Challenge Task 2. Given the con-
straint of only having normal operational data, our method focuses
on leveraging generative models for anomaly detection by employ-
ing an Autoencoder (AE).

Key components of our approach include training an AE model
on normal sound data to use reconstruction loss for detecting
anomalies, transforming sounds into log-mel spectrograms for bet-
ter feature representation, incorporating attribute or domain labels
in a conditional AE to enhance context-specific anomaly detection,
normalizing reconstruction losses by domain to address machine
variations, and inferring domain categories using classification or
clustering when labels are absent. To further improve detection per-
formance, we employ guided diffusion model for data augmenta-
tion, enhancing the diversity and robustness of the training data.
We also implement custom filtering techniques tailored to sound
signals, improving the quality and relevance of the input data. By
integrating these advanced techniques, our approach significantly
enhances the accuracy and reliability of anomaly detection, provid-
ing a robust tool for machine condition monitoring.

Our approach achieved notable performance on the develop-
ment set, demonstrating its effectiveness. The AUC for the target
domain was 61.50% and for the source domain was 60.25%. Addi-
tionally, the Partial AUC values (p = 0.1) for the target and source
domain was 53.26%. These results underscore the robustness and
applicability of our methodology in detecting anomalous sounds in
various operational contexts.

Index Terms— first-shot, anomalous sound detection, machine
condition monitoring, conditional Autoencoder, guided diffusion
model, custom filter

1. INTRODUCTION

In the DCASE 2024 challenge Task 2 – First-Shot Unsupervised
Anomalous Sound Detection for Machine Condition Monitoring,
the objective is to detect anomalous sounds in machines. For this
task, we need to utilize normal sounds from the training data to
detect anomalies in the test data [1]. Moreover, changes in the oper-
ational states of machines or environmental noise can cause domain
shifts. The system must employ domain generalization techniques
to handle frequent or subtle domain shifts. In the DCASE 2024 task,
attribute information for some machines is hidden. While additional
attribute information can help improve detection performance, we

cannot always obtain such information. Therefore, the system must
perform well whether attribute information is available or not [2,3].

Our proposed solution addresses these challenges by employ-
ing guided diffusion model for data augmentation, followed by cus-
tom filtering for certain machines. We then use a conditional Au-
toencoder, utilizing attribute or domain information as conditions to
detect anomalies, and the Mahalanobis distance normalized accord-
ing to different domains or attributes is used to calculate anomaly
scores. For machines without attribute or domain labels, we set
corresponding pseudo labels for them through clustering or classi-
fication strategies.

2. METHODOLOGY

2.1. Diffusion Model

Diffusion models are generative models that create new data by
progressively adding noise to the original data and then training a
model to reverse this process [4]. This approach involves two main
phases: the forward diffusion process and the reverse diffusion pro-
cess. In the forward diffusion process, the model gradually converts
the original data (such as images or sounds) into pure noise by incre-
mentally adding small amounts of noise until the data is completely
obscured. This can be viewed as a multi-step Markov chain, where
each step introduces slight noise perturbations. During the reverse
diffusion process, the model learns to reverse this transformation,
reconstructing the original data from the noise. A neural network
is trained to estimate the reverse transformations at each step, pro-
gressively reducing the noise to recover the original data [5].

The Guided Diffusion Model enhances diffusion models with
guidance mechanisms to steer the generation process [6,7]. To gen-
erate additional data using a guided diffusion model, we model the
reverse diffusion process conditioned on some guidance G:

x̂0 = xT +

T∑
t=1

fθ(xt, t, G) ·∆t (1)

where:

• x̂0 is the reconstructed data.
• xT is the noisy data at the final diffusion step.
• fθ is the neural network parameterized by θ, which estimates

the reverse process.
• G is the guidance used to control the generation process.

The guided diffusion model involves using guidance to achieve spe-
cific goals, such as generating images conditioned on certain in-
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puts or following a particular distribution. This approach allows
for more precise and controllable outputs, making guided diffusion
model powerful tools for tasks like image synthesis, inpainting, and
conditional generation.

In our approach, guided diffusion model are specifically em-
ployed for data augmentation in sound anomaly detection, provid-
ing a convenient way to generate data for specific domains or at-
tributes. This technique increases the diversity and robustness of
the training data, thereby enhancing the model’s ability to detect
anomalies under various operating conditions and environments.

2.2. Custom Filtering

In this task, the provided machine sound clips contain substantial
noise, making direct training with these raw clips often ineffective.
To address this issue, we employed Short-Time Fourier Transform
(STFT) for signal processing [8]. STFT transforms time-domain
signals into time-frequency domain representations, allowing us to
analyze the spectral characteristics of machine sounds in differ-
ent frequency bands. Through this spectral analysis, we observed
significant differences in the energy distribution between machine
sounds and noise across various frequency bands. Specifically, we
first applied STFT to the sound signals, decomposing them into dif-
ferent frequency bands.

X(t, f) =

N−1∑
n=0

x[n] · w[n− t] · e−j2πfn/N (2)

where:

• X(t, f) is the STFT of the signal.
• x[n] is the time-domain signal.
• w[n− t] is the window function.

We then performed filtering on each band, focusing on identifying
those bands with higher noise energy [9]. For high-pass filtering,
we apply a filter H(f):

Xfiltered(t, f) = X(t, f) ·H(f) (3)

where:

• H(f) is a high-pass filter function.

Through detailed band analysis and filtering experiments, we
established an effective noise reduction strategy. Notably, we dis-
covered that for certain machines, applying a high-pass filter at 1500
Hz effectively preserves the intrinsic machine sounds while signifi-
cantly reducing noise interference. This STFT-based band analysis
and high-pass filtering approach significantly improved the signal-
to-noise ratio of our training data, thereby enhancing the perfor-
mance of the anomaly sound detection model. This method not
only effectively reduces the impact of noise on model training but
also retains crucial machine sound features, ultimately improving
the accuracy and robustness of the model in detecting anomalous
sounds.

2.3. Conditional Autoencoder

Autoencoder (AE) detects anomalous sounds based on reconstruc-
tion loss [10]. Specifically, the encoder component maps the input
feature vector to a low-dimensional latent representation, and the
decoder component attempts to reconstruct the original input signal

from this latent representation. The reconstruction loss is defined
as the difference between the original input feature vector and the
output vector produced by the AE [11]. For samples not present in
the training set (i.e., anomaly samples), the reconstruction loss of
the AE will increase significantly, allowing them to be identified as
abnormal.

In terms of data processing, we convert the filtered STFT into
log-Mel spectrogram for better feature representation [12]. To con-
vert the filtered STFT to a log-Mel spectrogram, we apply a Mel
filter bank M(f) and take the logarithm:

SMel(m, t) = log

F−1∑
f=0

|Xfiltered(t, f)|2 ·M(m, f)

 (4)

where:

• SMel(m, t) is the log-Mel spectrogram.
• M(m, f) is the Mel filter for the m-th Mel frequency bin.

In the training phase, we use machine attributes or domain in-
formation as conditions, encode this information and input it into
the AE together with the audio features to enhance anomaly de-
tection in a specific context [13]. In the testing phase, we recon-
struct the samples using conditional AE corresponding to the spe-
cific machine, and calculate the Mahalanobis distance [14] for the
source and target domains separately, taking the minimum value as
the anomaly score. The specific process is shown in the following
formula:

Ŝ = fAE(SMel, c) (5)

where:

• SMel is the log-Mel spectrogram.
• c is the condition vector.
• fAE is the AE’s reconstruction function.

The reconstruction loss Lrecon is calculated as:

Lrecon = ∥SMel − Ŝ∥2 (6)

During training, we store the score distributions for both the source
and target domains. During testing, we compute the Mahalanobis
distance DMaha using these distributions:

DMaha = min{(∥SMel − Ŝ∥2)TΣ−1
source(∥SMel − Ŝ∥2),

(∥SMel − Ŝ∥2)TΣ−1
target(∥SMel − Ŝ∥2)}

(7)

where:

• Σsource and Σtarget are the covariance matrices of the score dis-
tributions for the source and target domains, respectively.

Additionally, we perform score normalization across source and tar-
get domains to address machine variations, we apply:

Lanomaly =
DMaha − µd

σd
(8)

where:

• µd are the mean of the Mahalanobis distance for domain d
(source or target).

• σd are the standard deviation of the Mahalanobis distance for
domain d (source or target).
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Table 1: DCASE 2024 Task 2 experimental results on development
dataset (%). The value in the row “Total Score” represents the har-
monic mean of the AUC and pAUC scores over all the machine
types and domains.

Baseline Baseline Our System(MSE) (MAHALA)
AUC(source) 66.98 63.01 53.76

ToyCar AUC(target) 33.75 37.35 55.98
pAUC 48.77 51.04 48.32

AUC(source) 76.63 61.99 58.28
ToyTrain AUC(target) 46.92 39.99 54.66

pAUC 47.95 48.21 48.58
AUC(source) 62.01 54.43 50.82

bearing AUC(target) 61.4 51.58 55.99
pAUC 57.58 58.82 58.8

AUC(source) 67.71 79.37 61.68
fan AUC(target) 55.24 42.7 68.34

pAUC 57.53 53.44 56.8
AUC(source) 70.4 81.32 78.94

gearbox AUC(target) 69.34 74.35 75.84
pAUC 55.65 55.74 58.21

AUC(source) 66.51 75.35 78.42
slider AUC(target) 56.01 68.11 75.64

pAUC 51.77 49.05 54.42
AUC(source) 51.07 55.69 52.3

valve AUC(target) 46.25 53.61 53.26
pAUC 52.42 51.26 50.05

AUC(source) 65.00 65.77 60.25
All AUC(target) 50.28 49.51 61.50

pAUC 52.84 52.28 53.26

Our network architecture is a convolutional AE, utilizing 128-
dimensional log-Mel spectrogram features as input. The training
batch size is set to 256, and the model is trained using the Adam
optimizer with a learning rate of 0.001. When labels are missing,
we use attribute classification or clustering strategies to generate
pseudo labels for conditional AE.

3. RESULT

Table 1 presents the results of our system. Compared to the baseline
[15], our improved Conditional AE, along with the score normaliza-
tion scheme for Mahalanobis distance-based anomaly scores across
source and target domains, showed slightly lower performance in
the source domain but significantly better performance in the target
domain. Overall, our Conditional AE-based anomaly sound detec-
tion model demonstrated notable improvements over the baseline,
enhancing the detection performance. We submitted four systems
for Task 2 of the DCASE 2024 Challenge, all of which have the
same processing pipeline except:

1. The conditional Autoencoder that uses conditional inputs for
improved anomaly detection.

2. The Autoencoder without conditional inputs.

3. A system with 256-sized log-Mel features for higher resolu-
tion analysis.

4. A Fully Connected Network mimicking the baseline struc-
ture with fully connected layers instead of convolutional lay-
ers.

4. CONCLUSION

In this technical report, we present our submission for Task 2 of
the DCASE 2024 Challenge. We propose a Conditional AE-based
anomaly detection system designed to accurately identify anoma-
lous sounds. To enhance the robustness of our model, we utilize a
guided diffusion model for data augmentation, thereby increasing
the diversity and robustness of the training data. This improvement
enables our model to detect anomalies effectively across various op-
erational conditions and environments. For feature extraction, we
address the issue of significant noise in the machine sound clips,
which can obscure the machine’s intrinsic sounds. We first apply
Short-Time Fourier Transform (STFT) to the sound signals to de-
compose them into different frequency bands. We then filter these
STFT results to reduce noise and preserve critical machine sound
features. Finally, we convert the filtered STFT into log-Mel spec-
trograms for detailed analysis. This approach significantly enhances
the accuracy of our anomaly detection model by providing a clearer
and more informative representation of the machine sounds. For the
final anomaly scores, we normalize them according to their domain
or attribute labels to obtain better detection performance.

Furthermore, when attribute and domain information are avail-
able, we integrate these directly into the network with the AE to
achieve comprehensive anomaly monitoring. In cases where at-
tribute or domain information is missing, we train classifiers or
use clustering techniques to infer this information and incorpo-
rate it into the model. Our results on the development dataset
demonstrate that our approach yields a significant improvement in
anomaly sound detection accuracy compared to the baseline.
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