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ABSTRACT

This report presents the systems we developed for the 2025 DCASE
Language-Based Audio Retrieval challenge (task 6). We use a bi-
encoder architecture and propose a novel cross modal attention ap-
proach in order to calculate the similarity between the embeddings
produced by both models. We make use of pretrained encoders in
both modalities: PaSST is used for encoding audio and RoBERTa
for encoding text. We trained our system on WavCaps, AudioCaps,
ClothoV2 and TACOS using contrastive learning. The best single
system that we were able to produce reaches a mAP@10 of 38.293
on the ClothoV2 test split and a mAP@16 of 44.203 using the task
specific improved notations. An ensemble of the models presented
archieves a mAP@10 of 40.423 on the ClothoV2 test split and a
mAP@16 of 46.864 using the task specific improved notations.

Index Terms— Language-based audio retrieval, Audio trans-
former, Cross modal attention

1. INTRODUCTION

Task 6 of the 2025 DCASE Challenge once again invites par-
ticipants to build systems that retrieve audio recordings from
a large database given a free-form textual description. These
language-based retrieval systems are attractive in practice because
they let users express arbitrary acoustic concepts, ranging from
concrete events to more abstract auditory scenes, without being
confined to a fixed taxonomy of tags. Successfully matching a raw
waveform to a sentence, however, remains technically demanding:
the model must learn a shared representation in which distances
between heterogeneous modalities (audio and text) meaningfully
reflect semantic similarity.

This year’s edition introduces a substantial update to the
benchmark material. In addition to the familiar Clotho V2 training
split, new human-verified relevance annotations for the entire
development-testing set are provided. Concretely, the dev-test
split contains 1069 natural-language queries (one per caption)
and their corresponding audio files; for every query, several audio
recordings are explicitly marked as relevant. These many-to-many
relevance labels allow participants to evaluate retrieval quality with
finer-grained metrics. Therefore, the 2025 edition introduces a
notable expansion of the benchmark material.

In the standard practice, a dual-encoder is trained with a con-
trastive loss so that a text caption and its paired waveform are

projected to nearby points in a joint embedding space. At inference
time, relevance is scored with the cosine similarity between the
global audio and text embeddings, and audio clips are ranked
accordingly. While this single-vector, cosine-based matching has
proved effective, it compresses each modality into one vector
and therefore discards fine-grained structure—e.g., the alignment
between individual words and short acoustic events. Recent
studies on audio-text retrieval indicate that explicitly modeling
token-level interactions with cross-modal attention can capture
richer semantic cues and improve ranking performance [1, 2]. In
this report, we adopt a new supervision regime and investigate
how richer relevance signals can be leveraged to improve retrieval
effectiveness.

2. CROSS MODAL ATTENTION IN TEXT TO AUDIO
RETRIEVAL

We present a cross-modal attention-based method for text-to-audio
retrieval that aims to effectively align textual and audio representa-
tions based on already existing studies [3].

Given textual embeddings T ∈ RN×dt and audio embeddings
A ∈ RM×da where N denotes the number of embeddings of
a sentence, dt the dimension of the text embeddings, M the
number of embeddings of an audio and da the dimension of the
audio embeddings, we first project them into a common space of
dimension d. Specifically, textual embeddings T are projected
through a linear transformation to obtain the queries vector (Q):

Q = WqT Q ∈ RN×d (1)

where Wq ∈ Rd×dt are learned parameters.

Audio embeddings are projected independently using two
separate linear transformations to generate key (K) and value (V )
vectors:

K = WkA, K ∈ RM×d (2)

V = WvA, V ∈ RM×d (3)

where Wk,Wv ∈ Rd×da are also trainable parameters.

Next, we apply multi-head attention, defined as:

MultiHead(Q,K, V ) = concat(head1, . . . , headh)W
O (4)
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where h indicates the number of heads, WO ∈ Rd×d are trainable
parameters and each attention head is implemented following the
standard definition [4]:

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (5)

where WQ
i , WK

i , WV
i ∈ Rd×dh are all trainable parameters and

dh denotes the head size.

The output of the attention module is passed through another
linear layer:

H = Wo · MultiHead(Q,K, V ), H ∈ RN×d (6)

with parameters Wo ∈ Rd×d also being trainable.

Finally, we compute the similarity between these refined cross-
modal representations H and the original textual embeddings T
using the average cosine distance between them as follows:

sim(T,H) =
1

N

N∑
i=1

Ti ·Hi

|Ti||Hi|
(7)

To train our models we rely on the normalized temperature
cross-entropy loss [5], which transforms the similarities into
conditional probabilities using a temperature-scaled softmax.

3. EXPERIMENTAL SETUP

3.1. Datasets

Our training process was executed utilizing several datasets:
ClothoV2 [6], AudioCaps [7], WavCaps [8] and TACOS [9].

3.1.1. ClothoV2

ClothoV2 [6] contains audio clips ranging from 10 to 30 seconds in
duration, each accompanied by five descriptive captions of lengths
between 8 and 20 words. Following the dataset organizers’ rec-
ommended splits, the development set includes 3840 training, 1045
validation, and 1045 testing audio clips. Performance was moni-
tored on the validation split, while test split results are reported here
and with the extended notations introduced this year.

3.1.2. AudioCaps

AudioCaps [7] consists of 51,308 audio clips sourced from Au-
dioSet [10], each paired with a single human-written caption av-
eraging 9.8 words. The training, validation, and test splits were
combined into a unified dataset utilized during the pretraining stage.

3.1.3. WavCaps

WavCaps [8] provides weakly-labeled synthetic captions for
403,050 audio clips from multiple sources, including FreeSound,
BBC Sound Effects, SoundBible, and AudioSet. Captions, gener-
ated via GPT3.5-turbo, average 7.8 words each. To ensure compli-
ance with current guidelines, overlapping data with Clotho evalua-
tion sets were excluded.

3.1.4. TACOS

TACOS (Temporally-Aligned Audio CaptiOnS) [9] is a dataset de-
signed to facilitate fine-grained audio-language modeling. It com-
prises 12358 real-world audio recordings sourced from Freesound,
each annotated with multiple free-text captions that are temporally
aligned to specific regions within the audio. In total, the dataset in-
cludes 47,748 such region-level annotations, amounting to approx-
imately 98 hours of labeled audio and covering over 76.6 hours of
unique content. On average, each audio clip contains 3.57 anno-
tated regions. TACOS introduces strong supervision for contrastive
audio-text learning by aligning each caption with its respective time
segment, thus enabling frame-wise contrastive training. Neverthe-
less, in our experiments we will only use the weak annotations
which do not include timestamps.

3.2. Audio Embedding Models

We only employed a single audio embedding architecture,
PaSST [11], which leverages pretrained vision transformer parame-
ters, fine-tuned on AudioSet, and employs a patch-dropping strategy
for computational efficiency. It produces an audio embedding every
10 seconds.

3.3. Sentence Embedding Model

We employed RoBERTa-large [12] as the sentence embedding
model due to its strong performance in previous retrieval tasks.
RoBERTa (A Robustly Optimized BERT Pretraining Approach)
is a transformer-based encoder that improves upon BERT by
training with larger mini-batches, longer sequences, and dynamic
masking. It omits the next sentence prediction objective used in
BERT, focusing instead on masked language modeling with more
aggressive training settings.

RoBERTa-large consists of 24 transformer layers, 16 atten-
tion heads per layer, and 355 million parameters in total. In our
setup, we utilized the output corresponding to the final transformer
layer as the sentence representation, which includes a summary
embedding and the embeddings of all the tokens in the phrase.

3.4. Preprocessing

Audio data preprocessing involved extracting random 30-second
segments for clips exceeding this length or zero-padding shorter
clips to the batch’s maximum length. Text data were standardized to
a lowercase and punctuation-free format, tokenized with RoBERTa
tokenizer, and padded or truncated to a maximum length of 32 to-
kens.

3.5. Training Procedure

We trained three different configurations consisting of the task
baseline architecture (which we will refer to from now on as
PaSST–RoBERTa Base), a cross attention system which only used
the sentence embedding token from RoBERTa, and finally another
cross attention system which utilized all of the text embeddings. We
used 8 attention heads and a joint embedding space of dimension
1024.

We trained both encoders and the cross-modal attention heads
on combined datasets (AudioCaps, WavCaps, ClothoV2, TACOS
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Clotho test split Improved captions
Model mAP@10 R@1 R@5 R@10 mAP@16 mAP@10

PaSST–RoBERTa Base 37.389 24.976 54.086 68.172 42.324 39.664
Sentence embedding 35.769 23.655 52.766 66.258 42.434 39.827
Full text embeddings 35.77 23.828 52.057 65.742 41.375 38.908

Table 1: Performace for the systems after pre-training

Clotho test split Improved captions
Model mAP@10 R@1 R@5 R@10 mAP@16 mAP@10

PaSST–RoBERTa Base 38.293 25.263 56 69.282 44.203 41.662
Sentence embedding 37.495 24.784 54.947 68.650 43.926 41.332
Full text embeddings 37.901 25.818 54.43 67,617 42.457 40.061
Ensemble 40.423 27.732 58.201 71.732 46.864 44.176

Table 2: Performace for the systems after knowledge distillation process

weak) employing the Adam optimizer with batch sizes of 128 for
the PaSST–RoBERTa Base and sentence embedding systems and
96 for the full text embeddings model. After one warm-up epoch,
a cosine annealing schedule was used to decrease the learning rate
from 2× 10−5 to 10−7 over 10 epochs.

After the training, fine-tuning with knowledge distillation was
executed in the same style as in [13] on ClothoV2, AudioCaps and
TACOS weak by applying the same training setup. Predictions
from three models were averaged to estimate caption-audio corre-
spondences. All experiments were performed with a temperature
parameter τ = 0.05 and loss balancing factor λ = 1.

4. RESULTS

We evaluated the performance of three system configurations:
the baseline architecture PaSST–RoBERTa Base model, a cross-
attention model using only the sentence embedding from RoBERTa,
and a cross-attention model leveraging the full set of token-level
embeddings. Additionally, we evaluated an ensemble of these
models.

Table 1 summarizes results obtained after the initial pretrain-
ing phase. While all systems show comparable performance, the
baseline model slightly outperforms the attention-based models in
mAP@10 on the ClothoV2 test set.

Table 2 summarizes results after the knowledge distillation phase.
The figures indicate that, although modelling fine-grained token
interactions can capture richer audio-language correspondence, a
single-vector matching strategy remains highly competitive when
both encoders are extensively pre-trained on diverse audio-caption
corpora. Our best performing model obtains a 38.293 mAP@10
score of the Clotho test split and a 44.203 mAP@16 score on the
improved captions.

Finally, the ensemble of all three systems further improves
performance archieving a mAP@10 of 40.423 and a mAP@16
of 46.864 and consistent gains across recall metrics. These
gains confirm that the three systems capture complementary
cues: the dual-encoder contributes strong global alignments,
while the attention-based models compensate with finer local
correspondences.
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