
Detection and Classification of Acoustic Scenes and Events 2025 Challenge

HYU SUBMISSION FOR DCASE 2025 TASK 1: LOW-COMPLEXITY ACOUSTIC SCENE
CLASSIFICATION USING REPARAMETERIZABLE CNN WITH

CHANNEL-TIME-FREQUENCY ATTENTION
Technical Report

Seung-Gyu Han1, Pil Moo Byun2, Joon-Hyuk Chang1,2,∗

1 Artificial Intelligence Semiconductor Engineering, Hanyang University, Seoul, Republic of Korea
2 Artificial Intelligence, Hanyang University, Seoul, Republic of Korea,

{sghan99, fordream0309, jchang}@hanyang.ac.kr

ABSTRACT

This paper presents the Hanyang University team’s submission for
the DCASE 2025 Challenge Task 1: Low-Complexity Acoustic
Scene Classification with Device Information. The task focuses on
developing compact and efficient models that generalize well across
both seen and unseen recording devices, under strict constraints on
model size and computational cost. To address these challenges,
we propose Rep-CTFA, a lightweight convolutional neural network
that integrates two key design elements: (1) reparameterizable con-
volutional blocks with learnable branch scaling coefficients, and
(2) a Channel-Time-Frequency Attention (CTFA) module. In ad-
dition, we explore input resolution variation by adjusting the hop
length and number of mel bins to control time-frequency granular-
ity. Knowledge distillation from a PaSST-based teacher ensemble
is used to guide the training of the student model, improving gener-
alization. Finally, we adopt a device-aware fine-tuning scheme that
updates lightweight classification heads per device while keeping
the shared backbone intact.

Index Terms— Acoustic scene classification, Low-complexity,
Reparameterization, Learnable branch scaling coefficients, CTFA,
Knowledge distillation

1. INTRODUCTION

Acoustic Scene Classification (ASC) involves identifying the en-
vironment in which an audio recording was captured, such as a
street, park, or shopping mall [1, 2]. Recent advances in deep learn-
ing have significantly improved the performance of ASC systems
[3, 4, 5]. However, deploying such models on resource-constrained
edge devices, such as mobile phones and embedded systems, re-
mains a challenging problem. These devices often have limited
memory and processing capacity and must operate under strict la-
tency and energy constraints [6]. Furthermore, ASC systems must
remain robust to domain shifts caused by differences in device char-
acteristics.

To address these challenges, the DCASE 2025 Task 1 [7, 8]
focuses on low-complexity acoustic scene classification with de-
vice information. Participants are required to design models that
operate under fixed complexity limits—defined in terms of parame-
ter count and multiply-accumulate operations—and generalize well
across both seen and unseen devices. Moreover, the task simulates
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real-time inference inference conditions by limiting the input to a
short audio segment, thereby increasing the difficulty of the prob-
lem.

In response to these requirements, we propose a compact and
efficient ASC model named Rep-CTFA. The model integrates two
key architectural innovations: (1) reparameterizable convolutional
blocks that decouple the training and inference architectures to al-
low efficient deployment [9], and (2) a Channel-Time-Frequency
Attention (CTFA) mechanism, inspired by multi-channel speech en-
hancement [10], designed to improve spectro-temporal feature ex-
traction. These components work in synergy to enhance model ca-
pacity while maintaining low inference complexity.

We also examine the impact of input resolution on model per-
formance. By varying the hop length and number of mel bins in the
feature extraction process, we obtain multiple configurations with
different time-frequency resolutions [4, 5]. Each configuration of-
fers complementary strengths in capturing short-duration acoustic
cues.

To improve generalization to diverse devices, we apply knowl-
edge distillation [11, 12] using an ensemble of large teacher mod-
els based on the PaSST architecture [13]. In addition, we adopt a
device-specific fine-tuning strategy, inspired by the DCASE base-
line [7], which uses device labels to adapt lightweight heads while
keeping a shared backbone fixed. This enables specialization for
seen devices without compromising model compactness.

These techniques enable our model to perform effectively under
both complexity constraints and device variability.

2. METHOD

2.1. Model Architecture

Our proposed architecture, Rep-CTFA, is designed to maximize
representational capacity during training while maintaining light-
weight and efficient performance during inference. It integrates
two core components: reparameterizable convolutional blocks with
branch scaling and an attention mechanism tailored to spectro-
temporal dynamics.

2.1.1. Reparameterizable Convolutional Backbone

Our model builds upon the Rep-Mobile architecture [9, 14],
which extends the idea of reparameterizable convolution to mobile-
efficient designs. During training, each convolutional block con-
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Table 1: Comparison of different systems

System
Hyper-parameter Complexity Accuracy (%)

Hop Mel Freq-mask. MACs Parameters General Device-specific

S1 500 256 48 18,758,084 62,578 57.41 58.85
S2 500 400 75 29,302,844 62,578 58.17 59.55
S3 300 256 48 29,512,940 62,578 58.29 59.81
S4 368 320 60 29,578,644 62,578 57.62 59.38

sists of multiple branches enabling richer feature extraction and im-
proved optimization. At inference time, these branches are fused
into a single equivalent 3x3 convolution, resulting in a simpli-
fied and efficient structure well-suited for deployment on resource-
constrained devices.

This reparameterization strategy enables the models to leverage
the high representational capacity of a multi-branch design during
training, while ensuring compliance with the strict complexity con-
straints—both in parameter count and multiply-accumulate opera-
tion (MACs).

2.1.2. Branch Scaling Coefficients

To further enhance flexibility, we introduce learnable branch scal-
ing coefficients. Each convolutional path within a block is associ-
ated with a trainable scalar that determines its relative importance.
During training, the model learns to emphasize or suppress specific
branches, enabling dynamic path weighting. This mechanism im-
proves both optimization stability and generalization, particularly
when the number of active parameters is strictly constrained.

2.1.3. CTFA

We integrate a CTFA module into the backbone, adapted from re-
cent advances in multi-channel speech enhancement [10]. This
module applies three types of attention sequentially: (1) channel
attention to model inter-channel dependencies, (2) temporal atten-
tion to capture temporal structures, and (3) frequency attention to
emphasize relevant spectral patterns. Combined, these mechanisms
enable the model to focus on informative regions of the input while
remaining robust to background noise and device variability.

2.2. Data processing

All experiments were conducted on the official 25% subset of the
TAU Urban Acoustic Scenes 2022 Mobile development dataset
[15].

All audio recordings are resampled to 32kHz and transformed
into log-mel spectrograms using a Short-Time Fourier Transform.
The baseline preprocessing configuration, adopted from the official
DCASE 2025 baseline system [7], uses a hop length of 500 sam-
ples and 256 mel-frequency bins. This setup balances time and fre-
quency resolution for general-purpose acoustic scene analysis.

To explore the effect of input resolution under fixed model con-
straints, we additionally trained three variants by adjusting the hop
length and the number of mel bins. One configuration increased
the spectral resolution by using 400 mel bins while maintaining the
default temporal resolution. Another configuration increased tem-
poral resolution by reducing the hop length to 300 samples. A third

variant sought a balanced trade-off using a hop length of 368 and
320 mel bins.

These configurations were intentionally selected to shift the
spectro-temporal granularity of the input features while remaining
within the allowed MACs budget. Each model variant was trained
and submitted independently, in accordance with the competition
rule that permits multiple final model submissions.

2.3. Data Augmentation

To improve generalization under limited training data and diverse
device domains, we apply a combination of spectrogram-level and
waveform-level data augmentation techniques. Each augmentation
strategy is designed to improve robustness domain variability.

2.3.1. Frequency MixStyle

We adopt a frequency-wise variant of MixStyle, a domain general-
ization technique that mixes instance-level feature statistics along
the frequency axis [16]. This method implicitly simulates domain
shifts across recording conditions by interpolating the mean and
variance of spectrogram features from different samples. A mix-
ing probability of 0.7 and an alpha parameters of 0.3 are used.

2.3.2. SpecAugment

SpecAugment [17] is applied in the frequency domain to enhance
robustness against frequency-localized distortions and improve gen-
eralization. To ensure consistency across different input resolutions,
the masking width is adapted to the number of mel bins. Specifi-
cally, a maximum frequency mask width of 48 is used for 256-bin
inputs, 60 for 320-bin inputs, and 75 for 400-bin inputs. Time mask-
ing is disabled to preserve temporal alignment crucial for short-
duration audio clips.

2.3.3. Time Rolling

We apply circular shifts in the time domain to the waveform with a
maximum offset of 0.125 seconds. This simple augmentation intro-
duces temporal variation without altering the underlying acoustic
scene structure, encouraging the model to focus on global scene
characteristics rather than local temporal cues.

2.3.4. Device Impulse Response Simulation

To simulate cross-device variability and improve generalization to
unseen devices, we augment recordings from the majority device
(Device A) by convolving them with impulse responses [18] col-
lected from a variety of consumer devices. With a probability of
0.6, a randomly selected device response is applied to each sample.
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Table 2: Class-wise Device-specific accuracy (%) of each system

System Airport Bus Metro Metro
Station Park Public

Square
Shopping

Mall
Street

Pedestrian
Street
Traffic Tram Accuracy

S1 47.47 75.66 57.74 53.40 74.34 45.05 59.80 37.31 76.03 61.69 58.85
S2 48.34 76.40 57.98 53.43 76.23 47.47 60.57 36.73 77.98 60.34 59.55
S3 45.10 74.38 61.58 58.89 75.76 45.12 59.16 40.20 76.94 60.95 59.81
S4 46.72 77.31 61.18 51.55 77.85 46.40 55.99 42.32 77.04 57.36 59.38

Table 3: Device-wise Device-specific accuracy (%) of each system

System A B C S1 S2 S3 S4 S5 S6 Accuracy

S1 68.39 61.06 63.34 57.03 55.12 61.03 56.79 57.00 49.91 58.85
S2 67.73 60.30 62.46 58.09 58.03 59.82 57.85 57.27 52.57 59.55
S3 68.48 61.03 63.56 58.33 57.70 59.67 58.70 58.70 52.15 59.81
S4 69.21 61.97 62.73 57.27 56.67 60.12 57.58 56.97 50.79 59.38

The impulse responses are sourced from the MicIRP 1, which pro-
vides a diverse set of real-world device-specific acoustic signatures.

2.4. Knowledge Distillation

To improve generalization in the low-resource setting, we employ
knowledge distillation with an ensemble of teacher models. Each
teacher is based on a PaSST[13] architecture pre-trained on the
large-scale AudioSet dataset [19]. These models are further fine-
tuned on the official 25% subset of the TAU Urban Acoustic Scenes
2022 Mobile development dataset [15] to adapt to the task-specific
acoustic domains.

To promote diversity among the teachers, we adopt three
distinct augmentation strategies during fine-tuning: frequency
MixStyle only, device impulse response only, and a combination of
both. Their outputs are averaged to form the final soft targets used
during distillation. The student model (Rep-CTFA) is optimized
using a hybrid loss function that combines cross-entropy with the
ground-truth labels and Kullback-Leibler divergence [20] with the
ensemble soft targets. A temperature of 0.1 is applied to soften the
teacher predictions, and the distillation loss weights set to 0.5 to
balance hard and soft supervision.

2.5. Device-specific Fine-Tuning

Since acoustic characteristics can vary significantly across record-
ing devices, device-aware adaptation is critical to achieving robust
generalization [21]. Following the official baseline strategy intro-
duced in the [7], we adopt a device-specific fine-tuning approach to
further improve performance on seen devices.

After training a unified backbone model using data from all
available devices, we fine-tune the model separately for each of the
six seen devices (A, B, C, S1, S2, S3). In this phase, a shared fea-
ture extractor is frozen, and lightweight device-specific classifica-
tion heads are trained independently. This modular strategy allows
the model to retain generalized acoustic knowledge while special-
izing in the acoustic nuances of each device. This targeted adap-
tation not only enhances device-level accuracy but also preserves
the overall model compactness, which is essential under the strict
model size and MACs constraints defined by the challenge.

1https://micirp.blogspot.com/

3. RESULTS

We evaluated four systems with varying input resolutions while
keeping the model architecture and parameter count fixed. The pri-
mary differences among these systems lie in the hop length, the
number of mel-frequency bins, and the frequency masking width
used during training. These configurations were carefully selected
to explore the impact of time-frequency resolution trade-offs under
the MACs constraint of DCASE 2025 Task 1.

Table 1 summarizes each system’s configuration and computa-
tional complexity, along with their performance in both general and
device-specific training modes. Notably, while System S1 (base-
line resolution) is the most lightweight, higher-resolution variants
(S2–S4) consistently achieve better accuracy.

A breakdown of class-wise, device-specific accuracy is pre-
sented in Table 2, illustrating that certain configurations enhance
recognition performance for specific scene categories. Table 3 re-
ports device-wise accuracy, highlighting the variation in perfor-
mance across both seen and unseen devices.
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