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ABSTRACT

We propose a confidence-aware ensemble knowledge distillation
method for acoustic scene classification under low-complexity and
limited-data settings. Our approach utilizes heterogeneous teacher
models—BEATs, and EfficientAT—fine-tuned on the DCASE 2025
Task 1 dataset, to guide the training of a lightweight student model,
TFSepNet. To improve over naive ensemble distillation, we in-
troduce a confidence-weighted strategy that emphasizes reliable
teacher outputs. Experimental results show improved generaliza-
tion on unseen devices and domains, outperforming single-teacher
and uniform ensemble baselines.

Index Terms— Acoustic Scene Classification (ASC), Knowl-
edge Distillation (KD), Ensemble Learning, Confidence Weighting,
Lightweight Neural Networks

1. INTRODUCTION

Acoustic Scene Classification (ASC) aims to automatically infer the
surrounding environmental context, such as subway stations, parks,
and shopping malls, from real-world audio signals [1]. ASC has
emerged as a key enabler for smart city infrastructure, public safety,
and context-aware services [2, 3]. For deployment in practical sce-
narios, ASC models must operate with minimal latency and compu-
tational overhead on resource-constrained platforms, including mo-
bile devices, IoT nodes, and edge computing systems [1].

To address these deployment-oriented constraints, benchmark
initiatives such as the DCASE Challenge have introduced ASC
tasks under limited-resource conditions, utilizing datasets such as
TAU Urban Acoustic Scenes. These data sets reflect real-world
challenges including device heterogeneity, class imbalance, and do-
main mismatch, particularly through evaluation on unseen devices,
thus promoting the development of models with robust generaliza-
tion capability.

Traditional studies have used a variety of model compression
techniques, such as compact CNN architectures [4, 5], pruning,
quantization, and knowledge distillation (KD) [6] to reduce model
complexity. Among these, KD has emerged as a scalable and effec-
tive framework for transferring high-level semantic representations
from large-scale teacher models to compact student architectures
[7], enabling efficient performance without significantly increasing
model size or inference cost [8].
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However, conventional KD approaches often rely on a single-
teacher model, which can introduce inductive bias and degrade gen-
eralization to mismatched domains or unseen conditions. To miti-
gate this limitation, ensemble KD approaches have been explored,
in which multiple teacher models are used to provide diverse and
complementary knowledge. However, naive averaging of output
logits can obscure class boundaries due to inconsistencies across
teacher predictions.

In this work, we propose a confidence-aware ensemble KD
framework for ASC. Specifically, we adopt two heterogeneous
teacher models—BEATs and EfficientAT—each pretrained and
fine-tuned on the DCASE 2025 dataset. A lightweight student
model, TFSepNet, is trained using a selective distillation pro-
cess, where soft predictions from teachers are aggregated using a
confidence-based weighting mechanism. This design enables the
student to prioritize reliable and informative outputs, thereby en-
hancing generalization across device types and acoustic domains.
Furthermore, we extend TFSepNet with an attention module con-
ditioned on embedded device information, enabling the model to
explicitly capture and infer device-specific characteristics. The ex-
perimental results on the DCASE 2025 Task 1 development set con-
firm that the proposed approach offers improved performance under
constrained training conditions and heterogeneous deployment sce-
narios.

2. PROPOSED METHOD

This section outlines the overall architecture and training method-
ology for ASC under low-complexity constraints. The proposed
system enables the transfer of semantically rich and complemen-
tary acoustic representations from multiple large-scale pretrained
teacher models into a tiny student network via a confidence-aware
ensemble knowledge distillation approaches.

The system consists of two key components: (1) a set of hetero-
geneous teacher models—each individually fine-tuned on the ASC
task—to provide diverse supervisory cues with distinct inductive
biases; and (2) a confidence-weighted distillation mechanism that
adaptively aggregates the teachers’ outputs based on their predictive
reliability, thereby allowing the student model to selectively capture
high-quality information during training.

Fig. 1 Fine-tuning pipeline for teacher models and the
confidence-aware training strategy for the student model. The pro-
posed framework leverages shared log-Mel spectrograms and soft
targets derived from multiple fine-tuned teachers. This design
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Figure 1: Fine-tuning pipeline for teacher models.

enables efficient knowledge transfer under data-constrained con-
ditions, while maintaining competitive classification performance
and low computational overhead. Such characteristics allow the
proposed system suitable for real-world deployment on resource-
limited platforms, including mobile and edge devices.

2.1. Feature Extraction

The input to the system comprises 1-second mono audio clips orig-
inally sampled at 44.1 kHz. To ensure compatibility with the archi-
tectural requirements of each model, the waveform is resampled to
model-specific sampling rates: 16 kHz for BEATs and the student
model (TFSepNet), and 32 kHz for EfficientAT. This pre-processing
step ensures temporal-spectral consistency while aligning with the
internal resolution of each model’s feature extraction pipeline.

The resampled waveform is subsequently transformed into a
log-Mel spectrogram via a Short-Time Fourier Transform (STFT),
computed using a 40 ms window length, 20 ms hop size, and a
2048-point FFT. A bank of 40 Mel-scale filters is then applied to
capture perceptually salient time-frequency characteristics essential
for acoustic scene understanding.

These log-Mel spectrograms serve as the shared input repre-
sentation across all teacher and student models within the distilla-
tion processing. Specifically, both BEATs and EfficientAT are fine-
tuned on the DCASE 2025 Task 1 dataset using these inputs, allow-

ing each model to adapt its high-level representations to the target
task. The same spectrogram format is employed to train the student
model, TFSepNet, ensuring consistent input semantics across the
system.

Following fine-tuning, each teacher generates temperature-
scaled soft predictions for every training dataset. These soft labels
are then aggregated through the proposed confidence-aware ensem-
ble distillation approach, which selectively emphasizes predictions
with higher reliability based on a confidence score. This selective
transfer facilitates efficient and robust learning of the student model,
particularly under data-scarce and domain-mismatched conditions.

2.2. Fine-Tuning for Teacher Models

The proposed framework employs two heterogeneous teacher mod-
els—BEATs and EfficientAT—each selected to introduce distinct
architectural priors and inductive biases. BEATs is transformer-
based model pretrained on an imbalanced 2M-sample subset of Au-
dioSet, whereas EfficientAT is a convolutional model trained on the
balanced 20K-sample version of the same corpus.

To align the pretrained representations with the target ASC
task, each teacher model is fine-tuned on the DCASE 2025 Task 1
dataset. During this process, only the classification head is updated
while the feature extraction backbone remains frozen. This design
enables effective domain adaptation while minimizing overfitting,
thereby preserving the general-purpose acoustic features acquired
during large-scale pretraining.

As shown in Fig. 1, the fine-tuning process includes pre-
processing steps such as resampling and spectrogram generation,
followed by data augmentation to improve robustness. After fine-
tuning, each teacher outputs soft class probabilities scaled by a tem-
perature factor. These soft predictions are then aggregated using a
confidence-based mechanism, wherein outputs from more reliable
teachers are emphasized.

The resulting ensembled soft labels are utilized as supervisory
signals for training the student model. This selective distillation
process forms the core of the proposed confidence-aware ensemble
KD framework.

2.3. Device-Information Module

To incorporate device-specific information into the student model,
TFSepNet is augmented with an attention-based device-information
module. This device-info module takes as input a categori-
cal indicator of the recording device, comprising a total of 10
classes—including 9 known device types and an additional un-
known class. These device classes are first mapped into continuous
representations via an embedding layer, which is subsequently fed
into a self-attention layer.

The output of the self-attention layer is a feature vector of di-
mension 1024, aligned with the frequency axis of the log-Mel spec-
trogram. This vector is broadcasted across all time frames and
element-wise multiplied with the spectrogram, thereby modulating
spectral representations based on device characteristics. The result-
ing vector can be interpreted as a learnable proxy for device-specific
impulse response, enabling the model to adapt its internal represen-
tation to device-induced variations. Both the embedding and atten-
tion layers are jointly optimized during training.



Detection and Classification of Acoustic Scenes and Events 2025 Challenge

Figure 2: Training pipeline of the student model using fine-tuned
teacher models.

2.4. Student Model Training

The student model, TFSepNet [4], augmented with the device-
information module, is trained using a confidence-aware ensem-
ble knowledge distillation. Instead of uniformly averaging teacher
outputs, the proposed method assigns confidence-based adaptive
weights to each teacher’s prediction, allowing the student to selec-
tively emphasize more reliable supervisory signals during training.

As depicted in Fig. 2, soft predictions are generated by fixed
teacher models—BEATs and EfficientAT—whose parameters re-
main frozen throughout the distillation phase. These confidence-
weighted soft targets serve as supervisory signals for training the
student model in a fully supervised manner. This selective distilla-
tion mechanism enables the student to suppress noisy or ambiguous
outputs and effectively integrate complementary knowledge from
multiple heterogeneous teachers.

The TFSepNet with device-information model is selected as
the student for its favorable trade-off between computational effi-
ciency and classification performance, rendering it well-suited for
low-resource ASC scenarios. The resulting model demonstrates ro-
bust generalization across mismatched acoustic conditions and di-
verse device types, even under limited training data and stringent
computational constraints.

3. RESULT

3.1. Experimental Setup

3.1.1. Dataset

DCASE 2025 Challenge Task 1 [13] is built upon the TAU Ur-
ban Acoustic Scenes 2022 Mobile dataset, previously used in the
2022–2024 challenges. It consists of 1-second, single-channel, 24-
bit audio clips sampled at 44.1 kHz, spanning 10 acoustic scene
categories. To simulate multi-device conditions, impulse responses
from real devices are convolved with audio recorded using device
A, generating synthetic devices S1–S10 that reflect the spatial and
compression characteristics of real hardware.

The dataset is partitioned into a development set and an evalua-
tion set. The development set includes 64 hours of audio from real
devices (A, B, C) and simulated devices (S1–S6), with S4–S6 held
out for testing to evaluate generalization. Only 25% of the devel-
opment data—along with device and city metadata—is accessible
for training. The evaluation set contains five unseen devices (D,
S7–S10) and recordings from two previously unseen cities. Scene
labels are withheld during evaluation; device IDs are available at in-
ference, while city labels remain hidden. The known/unknown de-
vice distribution is balanced between development and evaluation
phases.

3.1.2. Data Augmentation

Data augmentation plays a critical role in ASC, particularly under
limited supervision. To enhance the diversity and generalizability
of training data, we employ a composite augmentation pipeline that
integrates MixUp, MixStyle, SpecAug, FilterAug, frame-level time
shifting, and DirAug. These techniques collectively increase the
robustness of the model by simulating various acoustic and channel
conditions.

3.1.3. Optimization and Quantization

The student model, TFSepNet with the device-information module,
is trained for 150 epochs using the AdamW optimizer with an initial
learning rate of 1e-4. To improve convergence, stochastic gradient
descent with warm restarts is applied throughout the training pro-
cess. The batch size is set to 512. Following training, post-training
static quantization is performed using the Intel Neural Compressor,
converting the model weights to the INT8 data type. This quantiza-
tion step significantly reduces memory footprint and inference cost,
enabling efficient deployment on edge devices.

3.2. Performance Evaluation

We evaluated the performance of four systems using a consistent
student architecture, TF-SepNet. The experiments varied in terms
of data augmentation strategies and whether or how knowledge dis-
tillation from teacher models was applied.
System 1: The student model was trained with a comprehensive
augmentation pipeline consisting of MixUp (α = 0.3), MixStyle
(α = 0.4, p = 0.8), SpecAugmentation (mask size = 0.2, p = 1.0),
FilterAugmentation (step filter, ±4 dB), additive noise (SNRs: 10,
20 dB), frequency masking (1/16), time masking (1/10, 1/20), frame
shift (pooling factor 2), and DIR-Aug (p = 0.4). No knowledge
distillation was applied.
System 2: The student model was trained using the same augmenta-
tion settings as in System 1. Knowledge distillation was performed
using an ensemble of five BEATs teacher models—one trained with
SpecAugmentation probability p = 0.8 and four with p = 0.5.
System 3: The student model was trained using the same augmen-
tation pipeline as in System 1, excluding time masking. Knowledge
distillation was conducted using two teacher models: one BEATs
model trained with SpecAugmentation p = 0.8, and one Efficien-
tAT model.
System 4: The student model configuration was the same as in Sys-
tem 1, and the teacher ensemble was the same as in System 3.
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Table 1: Performance comparison between 4 different systems

General Device-Specific
log loss Accuracy log loss Accuracy

System1 1.2340 55.04 1.2286 55.06
System2 1.3182 51.30 1.3215 51.36
System3 1.2532 54.10 1.2580 54.01
System4 1.3141 51.25 1.3213 50.97

4. CONCLUSIONS

This study proposed a confidence-aware ensemble knowledge dis-
tillation framework for Acoustic Scene Classification (ASC), aimed
at transferring complementary knowledge from multiple pretrained
teacher models—BEATs and EfficientAT—into a compact and
computationally efficient student model, TFSepNet. The frame-
work leverages architectural diversity and inductive bias variation
among teachers to enable the student to learn semantically rich and
generalizable acoustic representations.

Experimental results demonstrate that each teacher model con-
tributes distinct discriminative information, and that this diversity
can be effectively exploited through ensemble distillation. The
confidence-based weighting mechanism selectively emphasizes in-
formative predictions during training, allowing the student to ben-
efit from robust supervision without incurring additional computa-
tional overhead.
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