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ABSTRACT

In this technical report, we describe our submission for Task 1,
Low-Complexity Device-Robust Acoustic Scene Classification, of
the DCASE 2025 Challenge. Our work tackles the dual challenges
of strict complexity constraints and robust generalization to both
seen and unseen devices, while also leveraging the new rule al-
lowing the use of device labels at test time. Our proposed sys-
tem is based on a knowledge distillation framework where an ef-
ficient CP-MobileNet student learns from a compact, specialized
two-teacher ensemble. This ensemble combines a baseline PaSST
teacher, trained with standard cross-entropy, and a ’generalization
expert’ teacher. This expert is trained using our novel Device-Aware
Feature Alignment (DAFA) loss, adapted from prior work, which
explicitly structures the feature space for device robustness. To cap-
italize on the availability of test-time device labels, the distilled stu-
dent model then undergoes a final device-specific fine-tuning stage.
Our proposed system achieves a final accuracy of 57.93% on the
development set, demonstrating a significant improvement over the
official baseline, particularly on unseen devices.

Index Terms— Acoustic Scene Classification, Knowledge
Distillation, Ensemble Learning, Device Generalization, Low-
Complexity, Device-Aware Feature Alignment

1. INTRODUCTION

Acoustic Scene Classification (ASC) systems aim to categorize au-
dio recordings into predefined scene classes. This field has gained
prominence through the Detection and Classification of Acoustic
Scenes and Events (DCASE) Challenge, which takes place annu-
ally [1]. In this report, we describe our submission for Task 1
of the DCASE 2025 edition. This task concerns low-complexity,
device-robust urban acoustic scene classification using the TAU Ur-
ban Acoustic Scenes 2025 Mobile dataset [2]. It demands sys-
tems that not only perform well under stringent complexity con-
straints—a maximum of 128 kB of parameters and 30 million
multiply-accumulate operations (MMACs)—but also exhibit strong
generalization across diverse device conditions.

A key aspect of this year’s challenge, differing from previous
editions, is the availability of device labels during the testing phase.
This allows for the development of systems that can adapt their in-
ference process based on the known device type. Our methodology
is designed to explicitly leverage this new rule, while also ensuring
robustness for completely unseen devices.
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Our approach is built upon the well-established Knowledge
Distillation (KD) framework, which has consistently proven effec-
tive for training high-performance, low-complexity models [3]. We
employ a CP-MobileNet [4] as our student model and utilize pow-
erful Patchout FaSt Spectrogram Transformer (PaSST) [5] models
as teachers. Standard data augmentation techniques such as Mixup
[6] and Freq-MixStyle [7, 8] are also used to enhance overall ro-
bustness.

The main contribution of this work is a novel training frame-
work that combines specialized knowledge distillation with an
adaptive fine-tuning strategy. We distill knowledge from a com-
pact teacher ensemble composed of two PaSST models: 1) a base-
line teacher trained with standard cross-entropy loss, and 2) a ’gen-
eralization expert’ teacher trained with our Device-Aware Feature
Alignment (DAFA) loss. This loss, adapted from our prior work
[9], explicitly structures the feature space for enhanced generaliza-
tion. To capitalize on the new task rule, the distilled student model
then undergoes a final device-specific fine-tuning stage. This step
specializes the model’s performance for the six known device types
present in the training data, allowing for an adaptive inference strat-
egy at test time. This combined approach is designed to achieve
a robust performance-complexity trade-off across all device cate-
gories.

2. SYSTEM COMPONENTS

2.1. Student Network: CP-MobileNet

For the student model, we selected CP-MobileNet (CPM) [4], an
architecture that has demonstrated a remarkable balance between
performance and computational cost in previous ASC tasks. It in-
corporates efficiency-focused designs, such as depth-wise separable
convolutions inspired by MobileNets [10], to minimize its parame-
ter count and computational load. Crucially, it retains architectural
properties proven to be effective for ASC, most notably a carefully
constrained receptive field which helps in learning discriminative
local features from spectrograms.

To meet the challenge’s complexity budget, our student model
is a CP-MobileNet configured with 32 base channels, an expansion
rate of 3, and a channel multiplier of 2.3. This configuration results
in a model with approximately 128K parameters and 29.5 Million
MACs, staying within the specified limits.

2.2. Teacher Network: PaSST

The foundation of our teacher models is the Patchout faSt Spec-
trogram Transformer (PaSST) [5], a powerful Transformer-based
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model. It employs a self-attention mechanism to effectively cap-
ture long-range temporal and spectral dependencies in audio spec-
trograms. Leveraging its pre-training on the large-scale AudioSet
dataset [11], fine-tuned PaSST models have consistently set state-
of-the-art benchmarks in various audio tasks, including ASC, and
have proven to be exceptional knowledge sources for smaller CNN-
based students.

2.3. Data Augmentation Techniques

To address the critical challenge of device mismatch, we employ
a combination of three data augmentation techniques during train-
ing:

• Freq-MixStyle[7, 8]: This technique combats device mis-
match by swapping the statistics of frequency-band-level fea-
tures between different training samples, encouraging the
model to learn representations that are robust to channel varia-
tions.

• Mixup[6]: We utilize Mixup, which generates new training
samples by creating convex combinations of pairs of samples
and their corresponding labels. Mixup serves as a strong form
of regularization, improving model generalization.

3. TRAINING METHODOLOGY

Building upon the components described in the previous section,
our core contribution lies in a novel training methodology. This
section details our training process, which is centered on a special-
ized ensemble knowledge distillation (KD) framework designed to
enhance model generalization. We will describe the composition of
our unique teacher ensemble and the overall loss function used to
train the student model.

3.1. Specialized Ensemble Distillation Framework

Our training paradigm is centered around a knowledge distillation
(KD) framework that utilizes a compact, yet powerful, specialized
teacher ensemble. Instead of separate strategies for different device
conditions, we employ a single, unified distillation process to train
our student model.

The teacher ensemble consists of two PaSST models, which
provide a combined supervisory signal for the student:

• A Baseline Teacher: A PaSST model trained conventionally
using only the standard cross-entropy loss. This teacher pro-
vides a strong and accurate signal based on the primary task of
scene classification.

• A Generalization Expert Teacher: A second PaSST model
trained with a composite loss function. This loss combines
the standard cross-entropy loss with our Device-Aware Feature
Alignment (DAFA) loss, which is detailed in Section 4. This
teacher specializes in creating a structured and device-robust
feature representation.

The soft predictions from these two teachers are averaged to form
the final distillation target. After the main distillation process is
complete, the student model undergoes a final device-specific fine-
tuning step to further optimize its performance on the characteristics
of known devices.

Table 1: Teacher accuracy (%) based on different configurations.
Teacher Config Overall Real Seen Unseen
Single Teacher

TCE1 59.78 65.22 56.77 57.36
TCE2 59.22 64.97 56.10 56.60
TDAFA 59.00 64.70 55.60 56.71

Two-Teacher Ensemble
TCE1 + TCE2 60.73 66.47 57.41 58.31
TCE1 +TDAFA 60.73 66.12 57.73 58.35

3.2. Knowledge Distillation Loss

The student model is trained by minimizing a composite loss func-
tion that combines a standard cross-entropy loss for hard labels and
a distillation loss for soft teacher predictions. The total loss L is
defined as:

L = (1− λ)LCE(δ(zS),y) + λτ2LKL(δ(zS/τ), δ(zT /τ)) (1)

where zS and zT are the student and teacher logits. y is the one-
hot encoded ground truth label. The hyperparameter λ balances
the two loss terms, and the temperature τ softens the probability
distributions from the softmax activation δ. The teacher logits zT
in this equation represent the averaged logits from the two-teacher
ensemble described in the previous subsection.

4. DEVICE-AWARE FEATURE ALIGNMENT LOSS

Our Device-Aware Feature Alignment (DFA) loss is introduced as
a regularization term, added to the primary cross-entropy objective
(LCE), to train our generalization expert teacher. The purpose of
this loss is to structure the embedding space to be robust against
device variations. The DFA loss itself consists of two weighted
components: a Device Cohesion-Separation Loss (DCSL) that man-
ages device-specific clusters, and a Global Device Alignment Loss
(GDAL) that provides overall structural coherence. The total objec-
tive for the expert teacher is:

Ltotal = LCE + λdcslLDCSL + λgdalLGDAL (2)

Through empirical validation, we set the weights to λdcsl = 0.01
and λgdal = 0.01.

4.1. Device Cohesion-Separation Loss (DCSL)

The DCSL component is designed to improve the separability of
device-specific feature clusters. The numerator of this ratio, the
intra-device scatter (SW ), quantifies the compactness of features
within each device cluster. The denominator, the inter-device scatter
(SB), measures the separation between the centroids of different
device clusters. The loss is formulated as:

LDCSL =
SW

SB + ϵ
(3)

Minimizing this objective simultaneously encourages each device
cluster to become internally tight while pushing the clusters exter-
nally apart from each other, thus preserving device-specific infor-
mation in a structured manner.
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Table 2: Final accuracy (%) by device on the validation set.
Stage A B C S1 S2 S3 S4 S5 S6 Overall
After Distillation 64.33 52.43 57.33 51.39 51.70 54.58 54.67 55.12 50.00 54.61
After DSFT (Final) 69.82 60.67 64.80 53.55 54.94 57.82 54.67 55.12 50.00 57.93
Improvement (∆) +5.49 +8.24 +7.47 +2.16 +3.24 +3.24 - - - +3.32

4.2. Global Device Alignment Loss (GDAL)

The GDAL component acts as a global regularizer on the feature
space, preventing the device-specific clusters shaped by DCSL from
fragmenting the embedding space. It penalizes the deviation of in-
dividual device centroids (µd) from a global centroid (µG), which
represents the mean of all features in a batch. By tethering all de-
vice clusters to this common anchor point, GDAL ensures that the
model learns a coherent, shared representation space. This is crucial
for the model’s ability to generalize to unseen devices. The loss is
defined as the mean squared distance from the device centroids to
the global centroid:

LGDAL =
1

|D|
∑
d∈D

||µd − µG||22 (4)

5. EXPERIMENTS AND RESULTS

In this section, we present the experimental validation of our pro-
posed system. We first describe the experimental setup, then ana-
lyze the performance based on different teacher ensemble composi-
tions to identify the optimal configuration. Finally, we present the
detailed performance of our final proposed system, highlighting the
effect of device-specific fine-tuning.

5.1. Experimental Setup

Our experiments are conducted on the TAU Urban Acoustic Scenes
2025 Mobile development dataset [2], which contains 1-second au-
dio clips from 10 acoustic scenes, recorded with a variety of real
devices. We follow the official training and validation splits pro-
vided by the challenge organizers. The primary evaluation metric
is the log loss, and we also report accuracy (%) for interpretability.
The main knowledge distillation stage runs for 500 epochs using the
Adam optimizer with a batch size of 128 and a peak learning rate
of 5e-4, managed by a scheduler with linear warmup and cosine de-
cay. For distillation, we use a temperature τ = 2 and a loss weight
λ = 0.98. After distillation, the device-specific fine-tuning stage
is performed for an additional 100 epochs for each of the 6 known
devices, using a lower learning rate of 1e-5.

5.2. Analysis of Teacher Ensemble Composition

To determine the optimal teacher ensemble for our knowledge dis-
tillation framework, we conducted a series of experiments. We first
distilled knowledge into the student model from three individual
teachers: two baseline teachers trained only with Cross-Entropy
loss on different seeds (TCE1, TCE2), and one expert teacher
trained with both Cross-Entropy and our DAFA loss (TDAFA).
Subsequently, we evaluated various two-teacher ensemble config-
urations.

The results in Table 1 provide several interesting insights.
Among the single teachers, the baseline teacher TCE1 achieved a

slightly higher overall performance than the TDAFA expert. This
suggests that for a single knowledge source, a standardly trained
model provided a strong foundation for the student.

However, the true benefit of our approach becomes evident in
the ensemble results. Both two-teacher ensembles significantly out-
perform any single teacher, confirming the general effectiveness of
ensembling. Comparing the two ensembles, we observe that they
achieve the exact same overall accuracy of 60.73%. Despite this tie,
the TCE1 +TDAFA ensemble demonstrates a clear advantage in
generalization. It achieves the highest accuracy on both the Seen
(57.73%) and, more critically, the Unseen (58.35%) device subsets.
This indicates that including the DAFA expert in the ensemble suc-
cessfully regularizes the student model and boosts its robustness to
novel device characteristics, which is a primary goal of this work.
Therefore, based on its superior generalization performance, we se-
lected the (TCE1 + TDAFA) ensemble for our final proposed sys-
tem.

5.3. Final System Performance

This section presents the detailed results of our final proposed sys-
tem, which employs the 2 teacher ensemble for distillation, fol-
lowed by a device-specific fine-tuning (DSFT) stage. Table 2 shows
the per-device accuracy before and after the DSFT stage to clearly
demonstrate its impact.

The results highlight two key aspects of our system. First, the
model already achieves strong performance after the main distil-
lation phase, particularly on unseen devices, thanks to the power-
ful teacher ensemble. Second, the DSFT stage provides a substan-
tial and consistent performance boost across all six known devices
present in the training data, with an average improvement of 3.32%.
This confirms that our fine-tuning strategy is highly effective at spe-
cializing the model, successfully leveraging the availability of de-
vice labels at test time as per the challenge rules.

6. CONCLUSION

In this technical report, we presented our system for the DCASE
2025 Task 1, addressing the challenge of low-complexity, device-
robust acoustic scene classification. Our proposed method is cen-
tered on a knowledge distillation framework that leverages a com-
pact, specialized two-teacher ensemble to train an efficient CP-
MobileNet student. The core of our approach lies in this ensemble,
which combines a baseline teacher with a ’generalization expert’
trained using our novel Device-Aware Feature Alignment (DAFA)
loss to instill robust, device-agnostic features. Furthermore, we ef-
fectively capitalized on the new task rule by applying a final device-
specific fine-tuning stage, which adapts the model to known device
characteristics using test-time device labels.

Experimental results on the development set validate our ap-
proach, achieving a final accuracy of 57.93%. Our analyses con-
firmed that the specialized teacher ensemble was crucial for im-
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proving generalization to unseen devices, while the adaptive fine-
tuning stage consistently and significantly boosted performance on
all known devices. This demonstrates that our two-stage strat-
egy—first instilling general robustness via specialized distillation,
and then adapting to specifics via targeted fine-tuning—is a pow-
erful and effective solution for the complex device generalization
problem presented in this year’s challenge.
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