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ABSTRACT

This report introduces the acoustic scene classification (ASC) ar-
chitecture submitted by the Chongqing University of Posts and
Telecommunications — Audio Lab (CQUPT-AUL) for DCASE 2025
Task 1. The architecture is a lightweight and efficient network struc-
ture, termed as DynaCP. Built upon CP-Mobile, DynaCP dynami-
cally selects between dilated convolutions with pooling or depth-
wise convolutions with pooling at different network layers, thereby
enhancing multi-scale feature representation with minimal compu-
tational overhead, while also alleviating the issue of information
sparsity caused by dilated convolutions. To improve classification
accuracy, a multi-teacher knowledge distillation approach is em-
ployed using pre-trained models of DYMN and MN. Experimental
results demonstrate that DynaCP achieves competitive performance
while maintaining low computational complexity.

Index Terms— DynaCP, Knowledge distillation, Lightweight,
Acoustic scene classification, DCASE 2025

1. INTRODUCTION

The acoustic scene classification (ASC) task of DCASE 2025 Task
1 aims to classify 1-second audio clips into one of ten predefined
acoustic scene categories [1]. As in previous editions, the chal-
lenge emphasizes model design under conditions of limited labeled
data and low computational complexity, requiring participants to
develop compact models with reduced parameter count and infer-
ence cost.

This year’s challenge introduces several key changes that fur-
ther increase the difficulty while also opening up new opportunities
for performance improvement. Participants are restricted to using
only 25% of the training dataset, encouraging the adoption of data-
efficient strategies such as pre-training or transfer learning. Ad-
ditionally, recording device information is now provided for both
the development and evaluation sets, enabling device-specific fine-
tuning and improving system performance in realistic deployment
scenarios, where the recording device is typically known. Partici-
pants are allowed to train separate models for different devices to
fully exploit this information.

To ensure deployability on resource-constrained platforms,
strict constraints are imposed on model size and computational
complexity. Specifically, the total number of model parameters
must not exceed 128 kB (including all values, even zeros), and the

maximum inference complexity is capped at 30 million multiply-
accumulate operations (MMACSs), reflecting the computational re-
quirements of typical edge devices.

Under these constraints, we propose a compact, efficient, and
deployable ASC system based on a modified version of CP-Mobile
[2]. In details, to enhance multi-scale feature extraction while main-
taining low computational cost, we integrate either dilated con-
volutions with pooling or depthwise convolutions with pooling at
different network layers. The resulting model is named DynaCP,
where “Dyna” stands for dynamic selection, indicating our config-
uration of the most suitable convolution-pooling combinations at
each layer.

To further improve the accuracy of the classification, we em-
ploy multi-teacher knowledge distillation [3] using two pre-trained
models, DyMN and MN as teachers [4, 5, 6]. These models are
variants of MobileNet, respectively, both of which are CNN-based
and have shown excellent performance in audio classification tasks,
achieving notable results in past DCASE challenges [7, 8]. The
architectural consistency between the student and teacher models
facilitates effective knowledge transfer. Moreover, we introduce a
two-stage distillation strategy to better preserve and transfer knowl-
edge from the teacher models. Experimental results demonstrate
that the proposed model achieves competitive performance while
satisfying all hardware constraints, highlighting its potential for
real-world deployment.

2. DATA PREPROCESSING AND AUGMENTATION

2.1. Data Preprocessing

For the student model DynaCP, audio clips were sampled at 44.1
kHz and each 1-second segment was converted into a log-Mel spec-
trogram with 256 frequency bins, using a Hann window of length
3072 and hop size 500. The STFT was computed with a window
length of 4096. Notably, the log-Mel spectrogram was based on an
effective sampling rate of 32,000 Hz, simulating lower bandwidth
while retaining the original audio quality. DynaCP contains only
61.6K parameters and requires 28,938,900 MACs for inference on
1-second audio, meeting the competition requirements.

The teacher models also adopted the same preprocessing
pipeline to maximize the effectiveness of knowledge distillation.
Both DyMN and MN were pre-trained on the AudioSet dataset
and subsequently fine-tuned on our dataset. Notably, due to the
inclusion of device information in this challenge, MN and DyMN
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were first trained on data without device labels, producing four
fine-tuned versions each, for a total of eight models. The fine-
tuning logic involved controlling whether time-frequency masking
and roll augmentation strategies were enabled. Then, they were fur-
ther trained on data that included device information, resulting in
(4 +4) x 6 = 48 device-specific models. Accordingly, we de-
signed the corresponding distillation strategy: the student model
was first distilled using data without device information, followed
by six additional distillations using data from each of the six devices
separately, aiming to enhance adaptation to different recording con-
ditions.

2.2. Data Augmentation

To enhance the generalization and robustness of the model, we em-
ployed various data augmentation techniques during training. These
include SpecAugment strategies [9], where the frequency masking
width is set to 48 and time masking is not used (maximum masking
width set to 0), simulating the effects of missing frequency bands or
device variations. Given a spectrogram S € RT*¥ a segment of
frequency bins is masked out with a maximum width of Finas. The
operation is

0 ifU§f<U+Fmask7

S(t, f) otherwise, (1

Sl(tvf) = {

where v is a randomly chosen starting frequency index.

Additionally, we introduced the MixStyle augmentation strat-
egy [10], which mixes the statistical distributions of feature maps to
generate new distributions. This method activates with a probability
of p = 0.8, and the mixing weights follow a Beta distribution with
a = 0.4, thereby improving the model’s adaptability to different
recording conditions.

Given two training samples (z;,y;) and (z;,y;), the Mixup
operation is formulated by

A ~ Beta(a, ),
N )
= Az; + (1 — Ny,

where Z denotes the mixed output.

Meanwhile, we applied a pre-emphasis filter to enhance high-
frequency components and introduced spectral diversity by ran-
domly perturbing the cutoff frequencies fmin and fmax of the Mel
filter banks.

3. MODEL STRUCTURE AND TRAINING
METHODOLOGY

3.1. Overall Design Pipeline

The overall design pipeline is illustrated in Figure 1 and Figure 2. It
covers the knowledge distillation process as well as the interactions
among DynaCP, DyMN, and MN models, with a detailed depiction
of the two-stage distillation procedure.

In Figure 1, eight pre-trained teacher models are fine-tuned us-
ing the training set, which consists of 25% of the total dataset with-
out device information. The logits output by these teacher models
are summed to generate soft labels, which are then used to perform
distillation on an untrained DynaCP student model. The purpose of
using an ensemble of teachers is to reduce the output fluctuation of
individual teacher models and thereby improve the efficiency and
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Figure 1: Distillation architecture without device information.

stability of the distillation process. Through this stage of training,
we obtain an initial student model, denoted as base.

In Figure 2, data corresponding to six different devices (a, b,
c, sl, s2, s3) are extracted from the base training set to form six
separate sub-training sets. Each sub-training set is named accord-
ing to its associated device. For each sub-training set, we fine-tune
four MN and DyMN models. Notably, these models have already
been pre-finetuned using the base training set prior to this stage.
Subsequently, each sub-training set is used to further distill the base
student model. This process is repeated six times, once for each sub-
training set. Finally, seven fine-tuned models are obtained, labeled
as DynaCP_a, DynaCP_b, DynaCP_c, DynaCP_s1, DynaCP_s2, Dy-
naCP_s3, and DynaCP_base, respectively.

In the following sections, we will provide detailed descriptions
of the student model and teacher model.

3.2. Student Model: DynaCP

DynaCP is a lightweight dynamic architecture model based on the
CP-Mobile baseline. The core innovation lies in modifying the in-
verted residual block of CP-Mobile, referred to as CPBlock, by re-
placing the standard depthwise convolution with a dynamic com-
bination of dilated convolution and pooling or depthwise convolu-
tion and pooling. We name this improved module DPCPBlock (Dy-
namic Parallel Convolution and Pooling Block). In DPCPBlock,
“D” represents either a standard depthwise convolution (depthwise
convolution) or a dilated convolution, while “P”” denotes the pooling
operation. To distinguish between different types of convolutions,
when using a standard depthwise convolution, the module is de-
noted by DPCPBlock(1); if using a dilated convolution with a dila-
tion factor r, it is denoted by DPCPBlock(r), where r is the dilation
rate. This design aims to enhance the feature extraction capabilities
of depthwise convolution while mitigating the information sparsity
caused by dilated convolution through parallel pooling branches.
Furthermore, DPCPBlock supports three different residual
structures depending on the stride and channel dimensions. There-
fore, combining the two dynamic structures with three residual
forms, DPCPBlock supports a total of 2 X 3 = 6 variant struc-
tures, depcited in Figure 3. For example, DPCPBlock(1)-1 indi-
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Figure 2: Multi-device information distillation architecture.

cates the use of a standard depthwise convolution with the first type
of residual connection, while DPCPBlock(2)_2 corresponds to a di-
lated convolution combined with the second type of residual con-
nection. These modules are flexibly configured based on input con-
ditions, thereby enhancing the overall adaptability and flexibility of
the model.

The overall architecture of DynaCP is summarized in Table 1.

Table 1: DynaCP Architecture

Input Operator Stride Dilation

256x89x1 Conv2D@3x3, BN, ReLU6 2x2 -

128 x45x8 Conv2D@3x3, BN, ReLU6 2x2 -
64 x 23 x 32 DPCPBIlock(2)_2 1x1 2
64 x23x32 DPCPBIlock(2)_3 2x1 1
64 x 23 x 32 DPCPBIlock(1)_3 1x2 1
64 x12x32 DPCPBIlock(2)_1 1x1 2
32x12x72 DPCPBIlock(1)_3 2x1 1
32x12x72 DPCPBIlock(2)_1 1x1 2
32x12x 168 Conv2D@1x1, BN 1x1 -
32x12x 10 Avg. Pool - -

Input format: Frequency Bands x Time Frames x Channels.

3.3. Teacher Model: Efficient-AT

The teacher models are based on MobileNetV3, a lightweight con-
volutional neural network that employs efficient inverted residual
blocks and linear bottleneck structures, reducing computational
complexity and the number of parameters through depthwise sep-
arable convolutions. The model includes two variants: MN and
DyMN. Among them, DyMN introduces a dynamic mechanism to
better adapt to diverse input features.

In both stages of knowledge distillation, we use both MN and
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Figure 3: The various dynamic structures of the DPCPBlock, with
attention to the fact that the pooling in Residual 3 maintains the
same structure as the pooling in DP.

DyMN models. The reason for selecting four teacher models lies in
the fact that the combination of using or not using time-frequency
masking and time roll augmentation results in four different config-
urations. This strategy leverages the structural similarity between
MN and DynaCP to achieve stable general feature transfer, while
the dynamic design of DyMN enhances adaptation to specific de-
vice conditions. By combining the advantages of these two archi-
tectures, we effectively improve the robustness and generalization
performance of the student model across various recording environ-
ments.

4. SUBMISSIONS AND RESULTS

In the test phase, the proposed design was comprehensively com-
pared with the baseline system, demonstrating competitive perfor-
mance on nearly all metrics, both on the base dataset and the device
dataset, as shown in Table 3.

Table 2: Overall Performance Metrics.

Base
Model Real Seen Unseen Accuracy
DyMN 64.57 6037  59.56 61.50
MN 67.06 59.46 5733 61.28
DyMN + MN 67.84 6225  60.53 63.54
General 63.65 5696  56.39 59.00
Device
Model Real Seen Unseen Accuracy
DyMN 67.69 61.62  59.58 62.96
MN 69.11 59.06 57.33 61.83

DyMN + MN 70.09 62.13  60.52 64.24
Device-specific  67.50 57.24  56.39 60.37

Table 2 presents the performance of the model and teacher mod-
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Table 3: Class-wise and Device-wise Accuracies for Different Models.

Model Airport Bus Metro Metro Public Shopping Street Street Tram
Station Square Mall Pedestrian  Traffic

General 46.76 74.14 57.04 53.60 43.74 65.19 38.45 78.32 56.49

Device-specific ~ 52.67 75.39 57.00 53.43 46.20 66.30 37.34 78.48 57.57

Model A B C S1 S2 S3 S4 S5 S6

General 69.00 59.12 62.83 56.30 55.21 59.36 57.12 57.09 54.97

Device-specific 71.52 63.74 67.23 56.48 55.82 59.42 57.12 57.09 54.97

els on additional overall metrics, where it also achieves excellent
results.
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