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ABSTRACT 

In this technical report, we present the SNTL-NTU team’s 

Task 1 submission for the Low-Complexity Acoustic Sce-

ne Classification of the Detection and Classification of 

Acoustic Scenes and Events (DCASE) 2025 challenge [1]. 

This submission departs from the typical application of 

knowledge distillation from a teacher to a student model, 

aiming to achieve high performance with limited complex-

ity. The proposed model is based on a CNN-GRU model 

and is trained solely using the TAU Urban Acoustic Scene 

2022 Mobile development dataset [2], without utilizing 

any external datasets, except for MicIRP [3], which is used 

for device impulse response (DIR) augmentation. Two 

models have been submitted to this challenge with 

memory usage not more than 117 KB and requiring 10.9M 

multiply-and-accumulate (MAC) operations. Using the 

development dataset, the proposed model achieved an 

accuracy of 60.25%.  

Index Terms— Acoustic scene analysis, CNN-GRU 

1. INTRODUCTION 

In Task 1 of the DCASE Challenge 2025, acoustic scene classifi-

cation (ASC) is employed to classify 10 acoustic scenes from 12 

cities based on 1-second audio samples. To align ASC with the 

performance of typical edge devices, Task 1 [1] of the DCASE 

Challenge 2023 has imposed the following system complexity 

constraints: 

• Maximum memory allowance: 128 KB 

• Maximum number of MACs per inference: 30 MMAC 

Numerous CNN models distilled from large pretrained teachers 

have dominated the submissions in DCASE Task 1 since these 

networks achieved the highest accuracies with the TAU Urban 

Acoustic Scene 2022 Mobile dataset [2] since 2022. Along with 

the knowledge distillation (KD), augmentation techniques were 

extensively applied to enhance the model's generalizability to 

unseen devices and the variability of the audio samples obtained 

for the same scenes from different cities. To further reduce the 

model size, post-training quantization and pruning were applied 

to the weights and parameters of models. 

The proposed model is a shallow CNN network combining 

depthwise (DW) convolution, channel shuffle (CS), squeeze-and-

excite (SE), and gated recurrent unit (GRU) to effectively per-

form ASC. The MAC of the proposed model is 10.9M, and 16-bit 

precision is used to quantize the proposed model since the num-

ber of parameters is less than 64K. 

The remaining sections of this report are organized as fol-

lows. In Section 2, the input features, augmentation techniques 

used, and proposed model are discussed. Section 3 presents the 

results of our submissions based on the various splits of the 

development dataset. This report is then concluded in Section 4. 

2. PROPOSED SYSTEM 

2.1. Preprocessing 

The TAU urban acoustic scene 2022 mobile dataset contains 

recordings of 10 acoustic scenes in 12 European cities. These 

recordings are captured using four devices and synthetic data for 

11 devices was generated using the recordings. Each 1 sec audio 

sample is captured with a sampling frequency of 44.1 kHz sam-

pling rate and encoded at 24-bit resolution.  

For the input feature, a 256 bin mel-spectrogram is calculat-

ed using the short time Fourier transform (STFT) with a window 

length of 0.18 sec and 17% overlap. This configuration produces 

33 time frames and an input feature shape of [256 × 33] for each 

audio sample. 

The input features and the down-sampling of the audio sam-

ples are computed and performed using Librosa [3]. The sam-

pling rate 44.1kHz is selected based on the observation on the 

averaged mel spectrograms of the 10 acoustic scenes, as shown 

in Fig. 1. The acoustic scenes of the airport, park, shopping mall, 

street pedestrian, and tram are narrower in terms of bandwidth 

but frequency components at 16kHz and above are observed in 

the remaining acoustic scenes. 

2.2. Data Augmentation 

Three augmentations using SpecAugment [4], Freq-MixStyle 

[5], and device impulse response (DIR) [6] are applied to the 

training data of the proposed models, improving system robust-

ness and performance. 

SpecAugment typically consists of three types of augmenta-

tions: time-warping, frequency masking, and time-masking. For 
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Fig. 1. Averaged mel-spectrograms of 10 acoustic scenes. Acoustic 

scenes of bus, metro, metro station, public square, and street traffic are 

found to span across a wider bandwidth. 
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Fig. 2. Proposed GRU-CNN model. Output channels of convolution 

blocks are shown on the left. Input channel of model is one.  

 

the proposed model, frequency masking has proven particularly 

effective. Freq-MixStyle extends MixStyle [7] to the frequency 

domain of the audio samples. By exposing the model to a variety 

of mixed spectral properties, the model can generalize to differ-

ent acoustic environments and their variations. It has been 

shown that models trained with Freq-MixStyle exhibit better 

generalization to unseen conditions, enhancing domain invari-

ance. Models trained with DIR augmentation can also better 

handle variations in recording devices, leading to improved 

accuracy with the development dataset.    

2.3. Proposed GRU-CNN Model 

The architecture of the submitted model is depicted in Fig. 2. It 

combines 1D and 2D convolutions, DW separable convolutions, 

SE blocks, GRU, and hybrid pooling (average and max pooling) 

strategies to extract rich spectral features from log-mel spectro-

grams.  

To reduce computational complexity, standard 2D convolu-

tions are replaced with DW separable and pointwise convolu-

tions. Inspired by MobileNetV2, the architecture performs 

pointwise convolution before DW convolution, with channel 

expansion applied in both stages. The DW convolution is further 

decomposed into two spatially separated 1D convolutions—

along the time and frequency axes—to more effectively capture 

distinct temporal and spectral patterns. Feature map downsam-

pling is applied in the second 1D convolution to minimize in-

formation loss during resolution reduction. The pointwise and 

two 1D DW convolutions are encapsulated in the ConvT block 

as shown in Fig. 2. SE blocks are integrated alongside both max-

pooling and average-pooling operations to enhance feature 

representation in the early and intermediate layers.  

Unlike conventional sequence models that operate along the 

temporal dimension, the GRU in this architecture is configured 

to learn patterns across the frequency axis. Specifically, the input 

is structured with a feature size of F (frequency bins) and a 

sequence length of C (channels). This design is also a conse-

quence of the large FFT size used to compute the log-mel spec-

trograms. As a result, the GRU produces an output of shape (B, 

C, H), where B is the batch size and H is the hidden size. These 

features are subsequently fused with those extracted by a parallel 

1D convolutional layer, enabling complementary pattern learn-

ing across the log-mel spectrogram. 

3. RESULTS AND SUBMISSION 

The proposed models were trained for 150 epochs with batch 

size of 256 using the ADAM optimizer with the learning rate 

adjusted by the cosine schedule with ramp-up.  The window 

length, hop length, FFT size, and number of mel bins are 8192, 

1364, 8192, and 256, respectively. The results of the provided 

baseline and submitted models are summarized in Tables I and II, 

respectively. Compared to the baseline model, the proposed 

model demonstrates better classification across most classes. 

The first proposed model (PM1) has the architecture shown in 

Fig. 2, and the second proposed model (PM2) has additional 

channel shuffle layers between the pointwise and DW convolu-

tions of the ConvT. The two proposed models significantly 

outperform the baseline model for all scenes and devices, even 

though no external dataset is used for training directly. 
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Table I Class-Wise Accuracies of Baseline in Percentage (Highest in bold) 

Model Airport Bus Metro 
Metro 

Station 
Park 

Public 

Square 

Shopping 

Mall 

Street 

Pedestrian 

Street 

Traffic 
Tram 

Macro 

Acc 

BL 44.43 64.81 43.87 48.22 72.75 32.04 53.14 34.43 74.10 51.08 51.89 

PM1 52.56 78.88 54.68 47.44 83.87 45.48 62.96 36.09 73.97 67.63 60.36 

PM2 53.07 74.78 59.52 50.74 80.26 46.29 62.39 39.66 75.01 60.81 60.25 

 

Table II Device-Wise Accuracies of Baseline in Percentage (Highest in bold) 

Split A B C S1 S2 S3 S4 S5 S6 Acc 

BL 63.98 55.85 59.09 48.68 48.74 52.72 48.14 47.23 42.60 51.89 

PM1 69.45 61.45 63.16 58.54 57.51 62.09 58.93 59.06 53.03 60.36 

PM2 69.18 60.60 65.10 57.03 56.39 62.84 58.27 59.48 53.42 60.25 

 

4. CONCLUSIONS 

In this technical report, we described the SNTL-NTU submis-

sions to task 1 of the DCASE 2025 challenge. The proposed 

models are based on GRN-CNN and are trained solely on the 

TAU Urban Acoustic Scene 2022 Mobile development dataset, 

with the exception that MicRIP is used for DIR augmentation. 

The macro average accuracies obtained from the two proposed 

models are over 60% and are comparable to the submissions to 

the 2024 DCASE challenge.  
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