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ABSTRACT

This technical report presents our submission to DCASE 2025
Challenge Task 1: Low-Complexity Acoustic Scene Classification
with Device Information. We propose a multi-device framework
that leverages device-specific models trained with knowledge dis-
tillation techniques and enhanced through AudioSet pre-training.
Our approach utilizes TF-SepNet as the backbone architecture, pre-
trained on the large-scale AudioSet dataset to learn robust acoustic
representations. For each of the known devices, a dedicated model
is trained. At inference time, the system identifies the device source
of the audio clip and selects the corresponding pre-trained model for
classification. Evaluated on the test set, our device-specific system
achieves an overall accuracy of 59.5%.

Index Terms— Acoustic scene classification, low-complexity
models, device-specific adaptation, knowledge distillation, TF-
SepNet, AudioSet pre-training, transfer learning

1. INTRODUCTION

Acoustic Scene Classification (ASC) [1] is a fundamental task in
computational audio analysis that aims to classify audio recordings
into predefined environmental scene categories such as ”metro sta-
tion,” ”urban park,” or ”public square.” This task has gained sig-
nificant attention due to its wide range of applications including
context-aware mobile devices, intelligent monitoring systems, and
audio content analysis for multimedia applications. The annual De-
tection and Classification of Acoustic Scenes and Events (DCASE)
Challenge [2] has been instrumental in advancing ASC research,
progressively introducing more challenging and realistic scenarios
that reflect real-world deployment conditions. The DCASE 2025
Challenge Task 1 represents a significant evolution from previ-
ous editions, building upon the foundations established in DCASE
2022-2024 while introducing novel challenges that better reflect
practical deployment scenarios.

The most significant change in this year’s challenge is the avail-
ability of recording device information at inference time. Unlike
previous editions where device information was withheld during
evaluation, encouraging the development of device-agnostic sys-
tems, DCASE 2025 provides device IDs for recordings in the eval-
uation set. This paradigm shift enables participants to develop
device-specific models that can leverage device characteristics to
improve classification performance, reflecting real-world scenarios

where the target deployment device is known. The dataset con-
sists of recordings from multiple devices including real devices (A:
Soundman OKM II Klassik, B: Samsung Galaxy S7, C: iPhone SE,
D: GoPro Hero5 Session) and simulated devices (S1-S10) created
through impulse response convolution and dynamic range compres-
sion. The development set contains data from devices A, B, C,
and S1-S6, while the evaluation set introduces unknown devices (D,
S7-S10) marked with ”unknown” IDs, maintaining the challenge of
generalizing to unseen recording conditions.

Our approach addresses these challenges through ADAPTF-
SepNet, a comprehensive framework that combines AudioSet pre-
training with device-specific adaptation strategies. We leverage the
TF-SepNet architecture as our backbone and enhance it with trans-
fer learning from the large-scale AudioSet dataset, enabling the
model to learn rich acoustic representations before fine-tuning on
the target ASC task. The device information is exploited through
specialized model adaptation, where separate models are trained
for each known device while maintaining a general model for un-
known devices. The remainder of this report details our method-
ology, experimental setup, and results, demonstrating how trans-
fer learning and device-specific adaptation can be effectively com-
bined to achieve competitive performance under strict complexity
constraints.

2. METHODOLOGY

2.1. System Architecture

Our system is built around the TF-SepNet [3] architecture, a
lightweight CNN designed for efficient acoustic scene classifica-
tion. The key components include:

• Backbone Network: We adopt TF-SepNet (Time-Frequency
Separate Network) as our core model architecture. TF-SepNet
employs separate convolutions for time and frequency dimen-
sions, enabling efficient capture of both temporal dynamics
and spectral characteristics in acoustic scenes. The architec-
ture consists of 17 layers with Time-Frequency Separate Con-
volution blocks, using 64 base channels and processing single-
channel mel-spectrograms with 512 frequency bins. This de-
sign provides an optimal balance between model complexity
and computational efficiency for mobile deployment scenarios.

• Pre-trained Feature Extractor: AudioSet pre-trained
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TF-SepNet to provide stronger time-frequency feature pri-
ors.

• Feature Extraction: CpMel spectrograms with 512 mel
bins and 32kHz sampling rate, providing rich spectral-
temporal resolution.

• Device-Specific Adaptation: Separate models are trained for
each known device (e.g., a, s1, s2) to mitigate device mis-
match issues.

• Knowledge Distillation: A teacher-student framework is em-
ployed, where the teacher model (BEATs) guides the student
(TF-SepNet) to achieve enhanced performance through soft la-
bel supervision.

2.2. Data Augmentation

Data augmentation plays a pivotal role in acoustic scene classifica-
tion, particularly when confronted with limited labeled training data
as imposed by the 25% subset constraint. Our framework incor-
porates a comprehensive augmentation pipeline comprising three
complementary techniques: Device Impulse Response (DIR) aug-
mentation, Frequency-wise MixStyle, and Soft Mixup. These aug-
mentation methods are designed to be modular and can be seam-
lessly integrated during the training process.

Device Impulse Response (DIR) Augmentation This technique
addresses the domain gap between different recording de-
vices by simulating cross-device recordings. We convolve
the input waveform with randomly selected device impulse
responses from the MicIRP dataset [4]. Given an input wave-
form x(t) and an impulse response h(t), the augmented sig-
nal is computed as:

xaug(t) = x(t) ∗ h(t) (1)

where ∗ denotes convolution. The application probability
is controlled by hyperparameter pdir, allowing for fine-tuned
control over augmentation intensity.

Frequency-wise MixStyle Adapted from the original MixStyle
approach [5], this method performs domain randomization
in the frequency domain rather than across feature channels.
Freq-MixStyle [6] normalizes spectral components across
frequency bands, effectively mitigating device-induced do-
main shifts. For a spectrogram S(f, t) with frequency bins
f and time frames t, the normalization is applied frequency-
wise to enhance cross-device generalization.

Soft Mixup Building upon the conventional Mixup strategy [7],
our Soft Mixup variant extends the linear interpolation to in-
corporate both hard labels and soft teacher predictions. For
two training samples (xi, yi, ỹi) and (xj , yj , ỹj), where x
represents input features, y denotes ground truth labels, and
ỹ contains teacher logits, the augmented sample is generated
as:

xmix = λxi + (1− λ)xj (2)
ymix = λyi + (1− λ)yj (3)
ỹmix = λỹi + (1− λ)ỹj (4)

where λ ∼ Beta(α, α) is sampled from a Beta distribution
with α = 0.2.

3. TRAINING SETUP

Our training methodology employs a four-stage progressive learn-
ing approach: AudioSet pre-training, base model training, knowl-
edge distillation, and device-specific fine-tuning.

3.1. Stage 1: AudioSet Pre-training

We first pre-train TF-SepNet on AudioSet’s 527 classes using bal-
anced training segments. The model uses single-channel input, 64
base channels, depth 17, and 512 mel-frequency bins. Training em-
ploys Adam optimizer (lr=0.004), CosineAnnealingWarmRestarts
(T0 = 10, Tmult = 2), batch size 128, and 300 epochs. Only
DIR augmentation is applied (p=0.4) to simulate diverse acoustic
environments.

3.2. Stage 2: Base Model Training

The pre-trained model is fine-tuned on DCASE Task 1 (10 acoustic
scenes) using the TAU Urban Acoustic Scenes 2022 Mobile De-
velopment dataset. We initialize from the best AudioSet check-
point with load classifier: false. Training configura-
tion: Adam optimizer (lr=0.004), batch size 256, 200 epochs, mon-
itoring validation accuracy.

Data Augmentation: We apply three augmentation tech-
niques: (1) MixUp (α = 0.3), (2) Freq-MixStyle (α = 0.4, p=0.8),
and (3) DIR augmentation (p=0.4).

3.3. Stage 3: Knowledge Distillation

We employ teacher-student learning using an ensemble of three
BEATS models (SSL, SSL+SL, SSL*) as teachers. The stu-
dent TF-SepNet is initialized from the best base model (epoch
59, acc=0.5619). Knowledge distillation parameters follow
DCASE2023 methodology: temperature τ = 2.0, distillation
weight λ = 0.02. SoftMixUp replaces standard MixUp to pre-
serve teacher knowledge. Training uses 300 epochs with identical
hyperparameters as Stage 2.

3.4. Stage 4: Device-Specific Fine-tuning

Individual models are trained for each device (a, b, c, s1,
s2, s3, unknown) using DCASEDataModuleByDevice. Each
model initializes from the knowledge distillation checkpoint with
load classifier: true. Training configuration: reduced
learning rate (0.0008), extended epochs (400), disabled DIR aug-
mentation for device specificity.

3.5. Post-Training Optimization

Post-training static quantization to INT8 precision is ap-
plied using Intel Neural Compressor with maximum 1% ac-
curacy loss tolerance. A multi-device inference system
(LitMultiDeviceInference) automatically selects device-
specific models during deployment.

3.6. Implementation Details

Training uses PyTorch Lightning framework with TensorBoard log-
ging, 2 data loading workers, and pin memory optimization. All
models use 32kHz sampling rate and maintain consistent 512 mel-
frequency bin extraction throughout the pipeline.
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Table 1: Class-wise accuracy (%) comparison with and without device-specific finetuning on the DCASE2025 Task 1 evaluation set
Scene Class Airport Bus Metro Metro Station Park Public Square Shopping Mall Street Pedestrian Street Traffic Tram

With device-specific finetuning 48.30 78.10 53.70 50.40 75.20 49.20 66.00 34.00 76.90 63.10
Without device-specific finetuning 48.00 76.90 54.00 46.90 73.90 48.79 66.20 31.00 76.90 60.90

4. SUBMISSION AND RESULT

Table 1 presents a detailed comparison of class-wise scene classifi-
cation accuracy with and without device-specific finetuning. Most
acoustic scenes benefit from device-level adaptation, with notable
gains observed in complex environments such as metro station, pub-
lic square, and tram. The results suggest that device-aware training
improves robustness in noisy or overlapping acoustic environments,
while classes like street traffic maintain high performance regard-
less of the setting due to their strong acoustic signatures.

Table 2: Performance evaluation on different devices with and with-
out finetuning the specific device

Setting a b c s1 s2 s3 s4 s5 s6 Overall

With 0.676 0.603 0.619 0.583 0.568 0.599 0.570 0.586 0.532 0.595
Without 0.655 0.583 0.612 0.579 0.553 0.598 0.582 0.568 0.521 0.583

Table 2 compares classification accuracy across different de-
vices with and without device-specific finetuning. The results show
consistent improvements across nearly all devices when models are
individually finetuned for each device, demonstrating the effective-
ness of adapting models to device-specific signal characteristics.
During the device-specific finetuning stage, we applied DIR aug-
mentation (p=0.8) to enhance performance on unknown devices.
The results reveal mixed outcomes: while simulated devices s4 and
s6 show improved performance, s6 exhibits reduced accuracy, indi-
cating that device variability continues to present challenges when
generalizing to certain unseen domains.

5. CONCLUSION

In this work, we present a comprehensive four-stage progressive
training methodology for DCASE 2025 Task 1 that effectively ad-
dresses the challenges of device domain mismatch and limited la-
beled data in acoustic scene classification. Our approach combines
AudioSet pre-training, comprehensive data augmentation (MixUp,
Freq-MixStyle, DIR augmentation), ensemble knowledge distilla-
tion using multiple BEATS teacher models, and device-specific
fine-tuning to achieve robust performance across diverse recording
conditions. The TF-SepNet backbone with time-frequency separate
convolutions efficiently captures both temporal and spectral pat-
terns, while the device-aware inference system ensures optimal per-
formance through automatic model routing. Experimental results
demonstrate the effectiveness of each training stage, with notable
improvements from knowledge distillation and device adaptation,
validating our progressive learning strategy for real-world acoustic
scene classification applications.
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