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ABSTRACT

This report presents our approach to task 3 of the DCASE Chal-
lenge 2025[1], which focuses on the localization and detection of
stereo sound events (SELD) in regular video content. We propose
a three-part ensemble model that operates in the audio domain and
outperforms the official baseline. To address class imbalance in the
STARSS23[2] dataset, we explore synthetic data generation using
SpatialScaper[3] and apply data augmentation techniques such as
channel-swapping and time-domain remixing. Our proposed sys-
tem achieves an F-score of 28%, DOA error of 17.3°, and relative
distance error of 0.43 on the development data set. We conclude by
suggesting possible future enhancements.

Index Terms— sound event detection and localization, ensem-
ble models, conformer, data augmentation

1. INTRODUCTION

The joint task of Sound Event Localization and Detection (SELD)
is critical for machine perception in real-world environments, en-
abling applications from smart homes to autonomous systems. Tra-
ditional SELD systems focused on Sound Event Detection (SED)
and Direction-of-Arrival (DOA) estimation [4]. The recent 3D
SELD task extends this by including Source Distance Estimation
(SDE), providing a more complete spatial understanding of the
acoustic scene.

Recent advancements have seen a move from separate mod-
eling of these tasks to joint modeling frameworks. The Activity-
Coupled Cartesian DOA (ACCDOA) representation and its multi-
track extension (multi-ACCDOA) have been pivotal in unifying
SED and DOA prediction into a single output vector, simplifying
network design [5]. Architecturally, models have evolved from
CNN-RNN structures [6] to more powerful backbones like the Con-
former, which effectively captures local and global dependencies in
audio feature sequences [7].

For the DCASE 2024 Challenge, a notable strategy involved
training separate models for different sub-tasks (e.g., SED-DOA
and SED-SDE) and ensembling their predictions, which achieved
state-of-the-art results [8]. Our work builds on these insights,
proposing an ensemble of specialized Conformer-based models to
tackle the SELD task.

∗Equal contribution

2. MODEL

Our proposed system is an ensemble of two specialized Conformer-
based models. The first model is a multi-ACCDOA system de-
signed to predict class, direction, and distance simultaneously. The
second is a task-specific model focused solely on Sound Event De-
tection (SED) and Direction of Arrival (DOA) estimation. The over-
all architecture for both models is shown in Figure 1.

2.1. Model Architecture

Both models in our ensemble share a common backbone architec-
ture, which consists of a convolutional front-end followed by a stack
of Conformer blocks. This structure is inspired by the successful
ResNet-Conformer architecture from the DCASE 2022 Challenge
and further adapted based on the NERC-SLIP system for DCASE
2024 [8].

The front-end features three Convolutional Blocks. These
blocks process the input stereo log-mel spectrograms to extract fea-
ture representations. Each block consists of convolutional layers,
batch normalization, pooling, and dropout.

The sequential modeling part of the network uses a stack of
eight Conformer Blocks. Each block integrates multi-head self-
attention, depthwise separable convolutions, and feed-forward lay-
ers, enabling the model to capture both local and global dependen-
cies in the audio sequence. Each block, operating with an inter-
nal dimension (dmodel) of 128, contributes approximately 220k pa-
rameters, with the feed-forward network (≈132k), multi-head self-
attention (≈67k), and convolution module (≈21k) being the main
components. This results in the Conformer stack having a total of
approximately 1.76 million parameters, which forms the majority
of the model’s complexity.

2.1.1. Multi-ACCDOA Model

This model is designed for the comprehensive 3D SELD task. As
shown in Figure 1(a), its output head is composed of fully con-
nected layers that map the Conformer output to the multi-ACCDOA
format. This format jointly encodes predictions for up to three si-
multaneous events (max polyphony: 3) per time frame across all
13 classes.

The associated loss function for this model is the Auxiliary Du-
plicating Permutation Invariant Training (AD-PIT) loss [5]. This
loss function effectively handles multiple overlapping sound events
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of the same class by finding the optimal assignment between pre-
dicted tracks and ground truth tracks. The core of AD-PIT is to
minimize the Mean Squared Error (MSE) on the Activity-Coupled
Cartesian DOA (ACCDOA) representation over all possible permu-
tations.

For a given time frame t and class c, with K predicted tracks
and J ground truth tracks (where K = J = 3 in our case), the
loss is calculated. Let ŷk,c,t be the ACCDOA prediction for track
k and yj,c,t be the ground truth for track j. The AD-PIT loss is
formulated as finding the minimum loss over all K! permutations π
of the predicted tracks:

LADPIT = min
π∈P

K∑
j=1

1

T · C
∑
c,t

∥∥ŷπ(j),c,t − yj,c,t

∥∥2 (1)

where P is the set of all permutations of track indices {1, ...,K},
and the ACCDOA vector y for a single track is the element-wise
product of the sound event activity and its 3D coordinates.

2.1.2. SED-DOA Specific Model

This model is exclusively for the SED and DOA sub-tasks. Unlike
the multi-ACCDOA model, it does not predict distance. As illus-
trated in Figure 1(b), the output head splits the final feature repre-
sentation into two separate branches for SED and DOA predictions.

The total loss is a weighted sum of the losses from these two
branches, a strategy adapted from the NERC-SLIP DCASE 2024
entry [8]. This allows for task-specific tuning, and the loss is for-
mulated as:

Ltotal = α · LSED + β · LDOA (2)
The Sound Event Detection (SED) loss, LSED, is the Binary Cross-
Entropy (BCE) between the predicted activity âct and the ground
truth activity act for each class c and time frame t:

LSED = − 1

CT

∑
c,t

[act log âct + (1− act) log(1− âct)] (3)

The Direction of Arrival (DOA) loss, LDOA, is the Mean Squared
Error (MSE) between the predicted DOA vector R̂ct and the ground
truth vector Rct, masked by the ground truth activity act:

LDOA =
1

C T

∑
c,t

∥∥act

(
R̂ct −Rct

)∥∥2
. (4)

Following the aforementioned work, the weights are set to α =
0.1 and β = 1.0 to prioritize accurate localization [8].

2.2. Ensemble Strategy

Our final system employs a frame-level ”winner-takes-all” ensem-
bling strategy, depicted in Figure 2. This method leverages the
specialized strengths of each model by consulting a performance
lookup table generated from the development-test set [9].

The process is as follows:
1. Inference: Both the multi-ACCDOA model (Localization

Specialist) and the SED-DOA model (SED Specialist) per-
form inference on the input audio, generating separate pre-
diction files.

2. Performance Lookup: We pre-calculate the F-score and
DOA error for each model on a per-class basis using the
‘dev-test‘ split. This creates two lookup tables mapping each
class to its expected performance for each model.

(a) Multi-ACCDOA Model (b) SED-DOA Specific Model

Figure 1: Architectures of the two models used in the ensemble. (a)
The comprehensive Multi-ACCDOA model. (b) The task-specific
SED-DOA model with separate output branches and a weighted
loss.

3. Frame-level Consolidation: For each frame in the evalua-
tion data, we compare the predictions from both models. We
calculate the average F-score of all classes predicted within
that frame for each model, using our performance lookup ta-
bles.

4. Winner-Takes-All: The model with the higher average F-
score for a given frame ”wins” that frame, and its predictions
are written to the final output file. If only one model predicts
events in a frame, its predictions are used by default.

This strategy allows the system to select the most reliable predic-
tion at each time step, combining the high F-score of the SED-DOA
model with the localization capabilities of the multi-ACCDOA
model.

2.3. Data

We train and validate our models on the dataset provided for task
3 by the DCASE Challenge organizers. This dataset has 13 target
classes of sound events. As the classes are imbalanced, we use Spa-
tialScaper to generate and augment synthetic data which can bal-
ance these classes. We use a quota-system during synthetic data
generation, where we first calculate the number of frames assigned
to each class and then how many classes need to be added to the
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Figure 2: Submission Ensemble Strategy

undersampled classes. The difference is set as the quota per class,
the number of frames which SpatialScaper is required to generate.

Apart from quota-based generation, we make some changes to
SpatialScaper for our generation process. As SpatialScaper mea-
sures rooms in metres, we convert the roomsizes in SpatialScaper
to centimetres - this is a done in accordance with a commit by user
abreuwallace [10]. We stay close to the distance distribution of the
STARSS23 dataset, to avoid localizing sound events at distances
that are anamolously larger than STARSS23. We append the sound
event datasets used by SpatialScaper, FSD50k[11] and FMA[12],
with sound events from the DESED dataset[13]. Finally, we per-
form data augmentation like channel swapping and time-domain
remixing using a pull request by user sivannavis [14].

Finally, all generated data is converted using the
dcase2025 seld generator repository provided by the organiz-
ers. We reduce the number of files to be generated from 30k to 20k.
Despite our best efforts, we found that using synthetic data did
not aid our efforts. We found that generating synthetic data with
SpatialScaper did not lead to improved results across classes. An
illustrative result of our experiment is shown in Figure 2.3.

Model F (%) DOA (°)

Baseline 23.2 22.3
Baseline with synthetic data 3.4 36.0

Table 1: Synthetic data: Performance on dev set.

3. EXPERIMENTS

3.1. Experimental Setup

All models were trained on the official DCASE 2025 Task 3 devel-
opment dataset in addition to synthetic data for certain rare classes.
The development dataset was split into training and testing folds as
specified by the challenge organizers.

3.2. Individual Models

We evaluated three individual models to understand their specific
strengths and weaknesses:

• Multi-ACCDOA: Our primary model for joint SED, DOA,
and SDE, trained only on the development data.

Figure 3: Synthetic Data Generation Strategy

• SED-DOA: The specialized model focusing only on SED and
DOA, with no distance prediction capabilities.

• Multi-ACCDOA (Aug.): The primary model trained on the
development data augmented with our synthetically generated
data, which specifically targeted under-represented classes.

4. RESULTS

The performance of our individual models and the final ensemble
on the development test set is summarized in Table 4.

Model F (%) DOA (°) RDE

Multi-ACCDOA 24.8 20.6 0.34
SED-DOA 28.4 20.3 –
Multi-ACCDOA (Aug.) 24.2 23.5 0.36

Ensemble 1 (all) 28.0 17.3 0.43
Ensemble 2 (only multi-accdoa) 26.6 20.4 0.36

Table 2: Ensembles: Performance on dev set.

4.1. Analysis of Individual Models

As shown in Table 4, a clear trade-off exists between the models.
The SED-DOA model achieved the highest F-score (28.4%). How-
ever, as it was not trained to predict distance, its distance error is
not applicable and its contribution to the final distance prediction
is null. Conversely, the Multi-ACCDOA model predicted accurate
distances, achieving the lowest distance error 0.34 while maintain-
ing the F-score and DOA error.
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Our experiments with synthetic data augmentation yielded
mixed results. While the Multi-ACCDOA (Aug.) model showed
improved F-scores for the targeted weak classes (11 and 12), as seen
in Table 4.1, its overall performance slightly degraded compared to
the model trained without augmentation. This suggests that while
targeted augmentation can be beneficial, it may negatively impact
performance on more common classes if not balanced carefully.

Class F-score (No Aug.) F-score (With Aug.)

Class 11 0.00 0.09
Class 12 0.00 0.11

Table 3: F-score: weak classes with and without data augmentation.

4.2. Ensemble Performance

Our ensemble strategy was designed to combine the strengths of all
three models. By using a frame-level ”winner-takes-all” approach
based on class-wise F-scores, we used the detection capability of the
SED-DOA model. For distance, the ensemble always defaulted to
the prediction from our distance expert, the Multi-ACCDOA model.

This fusion resulted in a robust final system. The ensemble
achieved an F-score of 28.0%, nearly matching our best individual
model, while improving the DOA error to a final value of 17.3◦. The
final distance error of 0.43 cm is a direct result of inheriting predic-
tions from the specialist model, providing a well-balanced system.

Another ensemble was a fusion of the Multi-ACCDOA models
(both augmented and unaugmented) which achieved an F-score of
26.6% and a DOAE of 20.4◦. The distance error came to around
0.36 which indicated a more well-rounded score while also not tak-
ing a massive hit to the rare classes due to augmentation.

5. CONCLUSION

Our report details a Conformer-based ensemble approach for the
DCASE 2025 Challenge Task 3, focusing on sound event localiza-
tion and detection (SELD). Our system utilizes a three-part ensem-
ble model and incorporates synthetic data generation and augmen-
tation to address class imbalance in the STARSS23 dataset.

Future work will explore improving the effectiveness of syn-
thetic data. This includes refining the generation process with Spa-
tialScaper, investigating alternative data augmentation techniques
beyond current methods like channel-swapping and time-domain
remixing, and developing more nuanced, targeted augmentation
strategies that avoid negatively impacting performance on common
classes.

Finally, further enhancements to the ensemble strategy are also
an important area of exploration in the future. This involves moving
beyond the current winner-takes-all approach to investigate more
sophisticated methods such as dynamic weighting of models based
on real-time performance metrics or confidence scores.
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