
Detection and Classification of Acoustic Scenes and Events 2025 Challenge

AUDIO DISMAE: UNSUPERVISED ACOUSTIC ANOMALY DETECTION VIA
DISENTANGLED MASKED AUTOENCODER

Technical Report

Yuren Bian1,JiayunChen2

Tianjin Key Laboratory of Autonomous Intelligence Technology and Systems, Tiangong University,
China

1yurenbian@outlook.com
2jiayunchen1@outlook.com

ABSTRACT

This technical report presents our submission to DCASE 2025
Task 2, which addresses unsupervised anomalous sound
detection under domain shift conditions. We extend the
Disentangled Masked Autoencoder (DisMAE), originally
proposed for visual domain generalization, to the audio domain.
In our approach, machine sounds are first transformed into log-
Mel spectrograms and then fed into the DisMAE framework.
The semantic branch is designed to reconstruct domain-invariant
features, while the variational branch captures domain-specific
attributes such as background noise and device variability. By
disentangling these two representations, the model achieves
robust reconstruction of normal operating sounds.
Reconstruction errors from the primary decoder branch are used
as anomaly scores. Experimental results demonstrate that the
proposed method achieves promising performance on several
machine types in the DCASE 2025 dataset.

Index Terms— DCASE, unsupervised anomalous
sound detection, disentangled masked autoencoder

1. INTRODUCTION

The DCASE 2025 Task 2 focuses on first-shot unsupervised
anomalous sound detection (ASD) under domain generalization
conditions. Participants are required to detect machine anomalies
without using any anomalous training data or machine-specific
adaptation, and models must be capable of generalizing to unseen
machine sections operating in previously unencountered
environments.Compared to previous editions, the 2025 task
introduces several notable updates. In particular, supplementary
data are provided for each machine type, including clean machine
sounds or background noise recordings, which may be optionally
leveraged to enhance anomaly detection robustness in
acoustically challenging or noisy conditions. In addition,
participants are requested to report the computational complexity
of their methods[1].

In this context, we explore the potential of domain-
generalizable representation learning to improve anomaly
detection under varying acoustic conditions. To this end, we
propose Audio DisMAE, an adaptation of the Disentangled
Masked Autoencoder (DisMAE)—a model originally developed
for visual domain generalization—to the audio domain[2]. Audio
DisMAE operates on log-Mel spectrograms derived from

machine operating sounds. Its semantic branch aims to extract
domain-invariant features, while its variational branch isolates
domain-specific characteristics, such as noise or machine
condition variability. By disentangling these two factors, the
model enables robust reconstruction of normal operating sounds
across domains. Anomaly scores are obtained from the main
decoder via reconstruction error, and evaluated under DCASE
2025 Task2 protocols.

2. METHODS

2.1. Data Preprocessing

Given time-domain recordings of machine sounds, we first apply
noise augmentation by mixing machine sounds with background
noise samples provided in the supplemental dataset. This
simulates realistic noisy environments and encourages the model
to generalize under various acoustic conditions.

The augmented audio signals are then converted into log-
Mel spectrograms with 128 Mel bands and a fixed number of
frames. These spectrograms serve as the input representation for
the Audio DisMAE model.

2.2. Model Architecture: Audio DisMAE

Audio DisMAE is adapted from the Disentangled Masked
Autoencoder architecture originally developed for vision tasks.
It consists of three branches:

Semantic encoder: Extracts domain-invariant features that
are stable across different machine types and acoustic
environments, enabling the model to generalize beyond specific
domains.

Variational encoder: Models domain-specific variations
such as environmental noise, machine-dependent characteristics,
and other non-stationary acoustic factors, allowing for
disentanglement from core semantic content.

Main decoder: Integrates the outputs from both the
semantic and variational encoders to reconstruct the complete
input spectrogram, facilitating precise anomaly scoring through
reconstruction error.

To adapt to audio inputs, we modify the input tokenization
to operate on log-Mel spectrogram patches, using 2D masking
across both the time and frequency dimensions. This allows the
model to learn feature representations sensitive to localized
audio events.
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The training objective minimizes the reconstruction loss
over masked regions, encouraging the model to learn
semantically meaningful latent representations while being
invariant to domain-specific noise.

3. EXPERIMENTS

The performance of our system is summarized in Table 1. We
employ the Area Under the Receiver Operating Characteristic
Curve (AUC) to assess the overall detection capability, and the
partial AUC (pAUC) to evaluate performance within a low false-
positive rate (FPR) region [0, p], where p is set to 0.1.

We adopt two separate evaluation strategies for anomaly
scoring. The first uses the Mean Squared Error (MSE) between
the input and reconstructed Mel-spectrograms to assess
reconstruction quality, which is then used as the anomaly score.
The second evaluates the cosine distance between the latent
representation of each test sample and the training data;
specifically, the minimum cosine distance to any training sample
in the normalized latent space is used as the anomaly score.

The baseline model used for comparison is the Simple
Autoencoder provided by the official DCASE 2025 Task 2
baseline system[3-5].

Based on different model parameter configurations and
anomaly scoring strategies, we submitted four systems for
evaluation. All models are built upon the DisMAE architecture,
with a key modification: the original random masking strategy is
replaced by a structured time-frequency masking scheme more
suitable for audio spectrograms. The detailed configurations of
the submitted systems are summarized in Table 1.The test results
are presented in Tables 2 and 3.
Table 1: Parameter settings for systems 1 to 4

System 1 System 2 System 3 System 4
embed_dim 768 768 192 192
num_heads 12 12 3 3

decoder_depth 8 8 1 1
decoder_num

_heads 16 16 8 8

evaluation
method MSE Cosine MSE Cosine

Table 2: Results of System 1 and System 2 on the development
set (%).

Baseline(M
SE) System 1 System 2

ToyCar
AUC-S 71.05 41.51 49.06
AUC-T 53.32 45.40 36.75
pAUC 49.79 49.63 49.47

ToyTrain
AUC-S 61.76 50.92 40.29
AUC-T 56.46 46.42 52.66
pAUC 50.19 49.47 49.10

bearing
AUC-S 66.53 59.98 57.26
AUC-T 53.15 61.16 49.84
pAUC 61.12 65.44 55.66

fan
AUC-S 70.96 52.42 54.90
AUC-T 38.75 45.10 47.62
pAUC 49.46 49.94 50.26

gearbox
AUC-S 64.80 57.26 42.46
AUC-T 50.49 56.32 45.64
pAUC 52.49 54.05 51.84

slider
AUC-S 70.10 49.46 60.64
AUC-T 48.77 50.27 54.86
pAUC 52.32 51.42 52.58

valve
AUC-S 63.53 51.58 47.38
AUC-T 67.18 58.93 47.74
pAUC 57.35 49.26 49.10

Table 3: Results of System 3 and System 4 on the development
set (%).

Baseline(M
SE) System 3 System 4

ToyCar
AUC-S 71.05 36.80 62.58
AUC-T 53.32 59.38 39.06
pAUC 49.79 48.52 50.42

ToyTrain
AUC-S 61.76 48.62 55.20
AUC-T 56.46 44.44 52.32
pAUC 50.19 49.63 49.58

bearing
AUC-S 66.53 51.24 59.70
AUC-T 53.15 48.56 54.60
pAUC 61.12 49.16 54.26

fan
AUC-S 70.96 55.70 72.90
AUC-T 38.75 49.56 23.46
pAUC 49.46 50.94 49.94

gearbox
AUC-S 64.80 50.02 47.32
AUC-T 50.49 55.58 58.00
pAUC 52.49 49.53 49.00

slider
AUC-S 70.10 55.88 47.02
AUC-T 48.77 54.60 53.28
pAUC 52.32 51.16 49.84

valve
AUC-S 63.53 45.29 42.70
AUC-T 67.18 52.30 45.78
pAUC 57.35 51.74 47.95
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