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ABSTRACT

This technical report describes the proposed system submitted to
the DCASE2025 Task3: Stereo sound event localization and detec-
tion in regular video content (Track A: Audio-only inference). To
improve SELD performance, we replace the convolutional blocks
in the baseline model with ResNet blocks, extract a 3-channel input
feature consisting of log-mel spectrograms and short-term power of
autocorrelation (stpACC), and employ two data augmentation tech-
niques: Time Masking and Frame Shuffle. Our system uses the
Multi-ACCDOA output representation with an ADPIT loss func-
tion to support overlapping sound events. Evaluated on the devel-
opment dataset, our proposed method achieves significant improve-
ments over the official baseline across F1-score, DOA error, and
relative distance error.

Index Terms— Sound Event Localization and Detection, Fea-
ture Extraction, Distance Estimation, Stereo Audio

1. INTRODUCTION

Sound Event Localization and Detection (SELD) is a combined task
that involves identifying sound events through sound event detec-
tion (SED), while simultaneously estimating the spatial characteris-
tics of the sources, including their direction-of-arrival (DOA) and
distance [1]. The output of a SELD system supports many ma-
chine cognition tasks. These include environment understanding,
self-localization, navigation toward hidden targets, sound source
tracking, smart-home automation, scene visualization, and acous-
tic monitoring [1].

Recent advancements in SELD have been driven by two com-
plementary developments: robust model architectures and effec-
tive output representations. A commonly adopted baseline is the
convolutional recurrent neural network (CRNN) SELDnet model
[2], which combines convolutional layers for spatial feature ex-
traction with recurrent layers for temporal modeling. This archi-
tecture outputs separate branches for SED and DOA estimation.
However, handling overlapping sound events requires additional
post-processing to associate detected events with their spatial po-
sitions. To address this limitation, the Multi-activity coupled Carte-
sian DOA (ACCDOA) representation was introduced [3]. Building
upon the ACCDOA framework [4], Multi-ACCDOA enables the
model to directly output multiple activity-coupled Cartesian DOA
vectors per frame, each encoding both the presence and direction of
a sound event. As a result, the combination of CRNN and Multi-
ACCDOA is used as the baseline system in this year’s DCASE
SELD challenge [5].

This technical report presents our SELD systems submitted to
the audio-only track of the 2025 DCASE Challenge. Specifically,
we replaced the ConvBlock in the baseline model, extracted two
types of audio features, and applied two data augmentation tech-
niques. Our models were trained solely on the DCASE2025 Task
3 Stereo SELD development dataset. The results demonstrate that
our approach achieves significant improvements over the baseline
system.

2. PROPOSED METHOD

2.1. Feature Extraction

Selecting the right input features is crucial in designing a SELD
system [6]. Experiments on the STARSS24 dataset have shown
that combining log-mel spectrograms with intensity vectors (IV)
improves both distance estimation accuracy and overall SELD per-
formance [7]. However, unlike previous years where multichannel
first-order Ambisonics (FOA) audio was used, the 2025 DCASE
Task 3 provides only stereo audio, which does not support the ex-
traction of IV features. To address this limitation, we used stpACC
[6] as an additional input feature alongside log-mel spectrograms.
Recent empirical results show that stpACC significantly reduces rel-
ative distance error (RDE) and enhances SELD performance, vali-
dating its effectiveness as a reverberation-based distance cue [6].

To implement the above feature selection, our SELD system
uses the following settings for feature extraction. The stereo audio
is sampled at 24 kHz. A 1024 point Fast Fourier Transform (FFT)
is applied to both log-spectral and stpACC feature extraction using
a 40 ms Hanning window and a 20 ms hop length. The resulting
2 channel log-mel spectrogram and 1 channel stpACC feature are
then concatenated to form a 3 channel audio feature representation.

2.2. Data Augmentation

After extracting the 3-channel audio features, we apply data aug-
mentation to further enhance model robustness. The official devel-
opment dataset contains 30,000 audio clips, each 5 seconds long,
totaling 41.7 hours. Of these, 16,214 clips are used for training
and 13,786 for testing. To improve the generalization ability of our
SELD model and reduce overfitting, we employ two complemen-
tary data augmentation techniques.

The first technique is Time Masking [8].In this method, con-
tiguous blocks of spectrogram frames—each spanning five 20 ms
frames (i.e., 100 ms)—are randomly zeroed out on the two log-mel
channels, while leaving the stpACC channel untouched. By align-
ing each mask with the label grid, we maintain label consistency
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Figure 1: The Architecture of the proposed SELD model.

while encouraging the model to infer sound event activity, direction-
of-arrival, and distance from incomplete temporal information.

The second technique, which we propose, is Frame Shuffle.
Here, all five log-mel spectrogram frames within each 100 ms block
are randomly permuted across the two log-mel channels. This
serves as a strong regularizer by introducing new temporal patterns
without altering spectral or spatial cues. It effectively increases the
diversity of training data without requiring additional recordings.

2.3. Network Architecture

The architecture of our proposed SELD model is illustrated in
Figure 1. Our SELD model is based on CRNN-MHSA model
[5], which integrates convolutional layers, bidirectional GRUs, and
multi-head self-attention (MHSA) layers to capture both local and
long-range temporal dependencies. To enhance spatial feature ex-
traction, we replace the baseline ConvBlocks with ResNet blocks
[9], allowing deeper feature representation with residual connec-
tions.

The output head follows the Multi-ACCDOA format, which di-
rectly encodes both the presence and direction of multiple sound
events per frame. To support the Multi-ACCDOA output represen-
tation, we adopt the Auxiliary Duplicating Permutation Invariant
Training (ADPIT) loss function [3], which allows the model to han-
dle multiple overlapping sound events from the same class. In the
proposed system, the Multi-ACCDOA vector is extended to include
distance estimation, forming the Multi-ACCDDOA representation.
Each output track is represented as:

ynct = anct ·Rnct, where Rnct = [x, y, z, d],

where anct ∈ {0, 1} indicates activity, Rnct ∈ R4 denotes a Carte-
sian vector consisting of a unit DOA vector [x, y, z] and a distance
component d > 0. The network predicts N such vectors per class
per time frame.

The ADPIT loss computes the minimum matching cost over all
permutations α of the output tracks:

LADPIT =
1

CT

C∑
c=1

T∑
t=1

min
α∈Perm[c,t]

ℓα,c,t
Multi-ACCDOA,

where

ℓα,c,t
Multi-ACCDOA =

1

N

N∑
n=1

L(yα,nct, ŷα,nct).

Here, ŷ represents the model prediction, and L(·) is the point-
wise loss function. We use mean squared error (MSE) as our pri-
mary loss:

L(y, ŷ) = ∥y − ŷ∥22.
Following the findings in [5], we also explored mean absolute

error (MAE) as an alternative to evaluate the impact on distance es-
timation. However, we observed that MSE provided a better trade-
off across all SELD metrics and was thus chosen as the final loss
function for training.

2.4. Training

We train our SELD model using the Adam optimizer with an initial
learning rate of 1 × 10−3. A learning rate scheduler monitors the
validation macro F1-score [1] and reduces the rate by a factor of
0.5 if no improvement is observed for 15 consecutive epochs. The
model is trained for up to 200 epochs with a batch size of 256. We
use only the official DCASE2025 Task 3 stereo SELD development
dataset for training and evaluation.

The training loss is computed using the ADPIT framework,
combining event activity, DOA, and distance components. We use
dropout and early stopping strategies to further mitigate overfitting.

Table 1: Experimental results of the proposed SELD system and the
baseline system, evaluated on the development dataset. The metrics
of macro F20° (%), DOAE, and RDE represent location-dependent
F1-score, class-dependent DOA error, and class-dependent relative
distance error, respectively.

Model macro F20° (%) ↑ DOAE(°) ↓ RDE(%) ↓

Baseline 22.8 24.5 41
Proposed 29.0 19.3 30

3. RESULTS

We evaluate our proposed SELD system on the development
dataset. Table 1 presents the experimental results comparing our
proposed SELD system with the baseline system. Our proposed
system achieves a macro F20° of 29.0%, significantly outperforming
the baseline’s 22.8%. The DOAE is reduced from 24.5°to 19.3°,
demonstrating better spatial localization. Additionally, the RDE is
lowered from 41% to 30%, showing more accurate distance estima-
tion. These results confirm the effectiveness of our feature extrac-
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tion strategy and data augmentation techniques in enhancing SELD
performance across all evaluated metrics.

4. CONCLUSION

In this technical report, we present the proposed system to solve
the DCASE 2025 challenge task 3 (audio-only task). By intro-
ducing ResNet-based convolutional blocks, combining log-mel and
stpACC features, and applying two data augmentation methods, we
enhanced the model’s ability to detect and localize sound events in
stereo audio. Our system leverages the Multi-ACCDOA represen-
tation and ADPIT loss function to effectively handle overlapping
events. Experimental results on the development dataset show clear
improvements over the baseline system in all key metrics, validating
the robustness and generalization capability of our approach.
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