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ABSTRACT

This technical report presents our approach for Task 2 of
the DCASE2025 Challenge, First-Shot Unsupervised Anomalous
Sound Detection for Machine Condition Monitoring. To tackle the
challenge of detecting anomalous sounds, we utilize a pre-trained
model as a feature extractor. We further adapt the model to the task
using Low-Rank Adaptation (LoRA), allowing efficient fine-tuning.
Anomaly scores are then computed using a k-nearest neighbors al-
gorithm on standardized feature vectors. Experimental results on
the development set demonstrate that our proposed system signifi-
cantly outperforms the official baseline, validating the effectiveness
of our approach.

Index Terms— Anomalous sound detection, pre-trained
model, domain shift

1. INTRODUCTION

Anomalous sound detection (ASD) refers to the task of determin-
ing whether the sound emitted by a target machine is normal or
indicates an abnormal condition. The ability to automatically de-
tect mechanical failures through sound analysis plays a crucial role
in AI-based factory automation, enabling predictive maintenance
and minimizing unplanned downtime. The DCASE2025 Challenge
Task 2, First-Shot Unsupervised Anomalous Sound Detection for
Machine Condition Monitoring [1], [2], [3], [4], aims to develop
ASD models that can perform well despite environmental or do-
main shifts, using noisy normal machine sounds and a few clean or
noise-only samples for training.

This task involves addressing three major challenges. First, the
model must be trained using only normal sound data. Since anoma-
lous events are rare and exhibit diverse patterns, collecting suffi-
cient abnormal samples is inherently difficult. As a result, the model
needs to learn how to detect a wide range of potential anomalies us-
ing only normal sound during training. Second, the model must de-
tect anomalies robustly under domain shifts. In real industrial envi-
ronments, changes in machine operating conditions or variations in
environmental noise can easily cause domain shifts. To address this,
the model should incorporate domain generalization techniques to
maintain performance across different domains. Third, the model
should generalize to completely new machine types without any ad-
ditional hyperparameter tuning. Since no evaluation data are avail-
able in these situations, conventional tuning strategies cannot be ap-
plied. Therefore, the task requires solving a first-shot ASD problem.

In this study, we propose an ASD system specifically designed
to tackle the aforementioned three challenges commonly encoun-
tered in real-world applications. Our approach leverages a pre-

trained audio representation model, BEATs, as the feature extrac-
tor. To detect anomalies, we pair this with a k-nearest neighbors
(KNN)–based anomaly detection method. We also apply feature
standardization during the detection process to make the anomaly
scores more consistent, which helps improve the overall perfor-
mance of the system.

2. METHODOLOGY

Our ASD system is composed of two main components [5], [6].
The first is the feature extractor, which serves as the front-end. This
module contains trainable parameters and is used to extract fea-
ture vectors from input sound data. The second component is the
anomaly detector, which functions as the back-end. This part does
not include any trainable parameters. Given the feature vectors pro-
duced by the front-end, it calculates the anomaly score for each
input.

2.1. Feature extractor

For the feature extraction component, we adopt the pre-trained
model BEATs (Bidirectional Encoder representation from Audio
Transformers) [7], a self-supervised learning framework designed
to learn high-level representations from audio signals. BEATs con-
sists of two main modules: an acoustic tokenizer and an audio SSL
(self-supervised learning) model, which are jointly optimized iter-
atively. The acoustic tokenizer produces semantically meaningful
discrete labels, which guide and enhance the representation learn-
ing of the audio SSL model.

To adapt BEATs to our task, we fine-tune it using Low-Rank
Adaptation (LoRA) [8]. Instead of updating all parameters, LoRA
introduces a small number of trainable weights, allowing for effi-
cient fine-tuning. The model is fine-tuned in a classification setting,
where each machine type in the dataset is treated as a separate class.
For this purpose, we attach a mean pooling layer followed by two
dense layers to the BEATs architecture.

We use the BEATs-iter3 version for fine-tuning. Input audio is
either zero-padded or truncated to 10 seconds, and then transformed
into a log-mel spectrogram using a frame length of 25 ms, a frame
shift of 10 ms, and 128 mel bins. We employ the AAM softmax [9]
with margin m = 0.2 and scale s = 30, and optimize the model us-
ing the Adam optimizer. LoRA is applied specifically to the query,
key, and value projection layers within the self-attention modules of
the transformer.
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2.2. Anomaly detector

For the anomaly detection component, we employ a KNN approach
using cosine distance as the similarity metric. Given a test sample,
its feature vector is first extracted by the feature extractor. Then, the
distances between this vector and all feature vectors from the train-
ing data—belonging to the same machine class—are calculated.
The smallest of these distances is used as the anomaly score.

To improve detection performance, we apply feature standard-
ization before computing distances. Specifically, both training and
test feature vectors are standardized using the mean and standard
deviation computed from the training feature vectors. This normal-
ization step helps ensure consistent distance computation, enhanc-
ing the reliability of anomaly scoring.

3. RESULT

The proposed ASD system is evaluated with the AUC and pAUC
where p = 0.1. Table 1 presents the result of our ASD system. The
result shows that our proposed systems outperforms the baseline.

Table 1: Result of submitted systems on the DCASE 2025 task 2
development set

Machine Metric Baseline System1 System2 System3 System4

AUC(source) 63.53 82.88 76.12 83.6 83.6

Valve AUC(tartget) 67.18 71.04 72.56 72.52 73.2

pAUC 57.35 56.57 58.63 65.31 67.78

AUC(source) 61.76 78.67 76.36 72.36 72.43

ToyTrain AUC(tartget) 56.46 62.24 66.04 62.15 68.19

pAUC 50.19 52.31 56.57 53.78 58.78

AUC(source) 71.05 66.79 64.48 60.6 58.75

ToyCar AUC(tartget) 53.52 65.32 66.28 71.68 75.04

pAUC 49.7 51.15 52.68 51.31 51.36

AUC(source) 70.1 82.8 81.16 72.24 77.44

Slide rail AUC(tartget) 48.77 58.88 57.68 53.84 52.67

pAUC 52.32 53.63 53.57 50.73 50.15

AUC(source) 66.53 68.24 70.71 70.76 71.6

Bearing AUC(tartget) 53.15 65.36 66.99 62.95 72.52

pAUC 61.12 54.05 52.42 54.94 57.0

AUC(source) 64.8 74.71 70.43 70.56 67.04

Gearbox AUC(tartget) 50.49 74.24 69.08 70.0 55.08

pAUC 52.49 68.10 54.36 58.94 52.57

AUC(source) 70.96 50.84 49.47 47.64 46.88

Fan AUC(tartget) 38.75 66.76 65.12 56.24 55.24

pAUC 49.46 56.47 55.36 52.31 51.31

4. CONCLUSION

This paper proposes ASD systems for the DCASE 2025 Challenge
Task 2. We fine-tune the pre-trained model BEATs by applying

LoRA. Then we combine it with KNN detector which performs
standardization to the feature vectors. Our proposed systems out-
perform the baseline.
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