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ABSTRACT 

Anomalous sound detection (ASD) plays a crucial role in ma-

chine condition monitoring, especially in scenarios where col-

lecting anomalous data is impractical. In this report, we propose 

a First-Shot Unsupervised Anomalous Sound Detection method 

that requires only normal sound recordings during training. Our 

approach leverages multiple pre-trained audio embedding mod-

els to extract rich and diverse feature representations from ma-

chine sounds. Each embedding is evaluated using a K-Nearest 

Neighbors (KNN) algorithm to compute anomaly scores without 

supervision. To further improve detection performance and 

robustness, we perform model-level score fusion by combining 

the outputs from different embedding models. Experiments 

conducted on public datasets demonstrate that our method 

achieves competitive performance in first-shot and low-resource 

settings, with strong generalization capabilities across machine 

types and environments. This framework offers a practical and 

scalable solution for industrial anomaly detection applications.  

Index Terms— anomaly detection, pre-trained models, 

K-Nearest Neighbors 

1. INTRODUCTION 

Anomalous Sound Detection (ASD) is a key task in machine 

condition monitoring that aims to detect abnormal machine be-

havior by analyzing acoustic signals. Since mechanical failures 

often manifest as changes in running sound, ASD offers a non-

invasive, cost-effective, and flexible approach for early fault 

detection. Particularly in industrial environments, ASD is well 

suited for monitoring a wide range of machine types without 

requiring physical contact or complex sensor setups. The unsu-

pervised setting—where only normal sound data is available 

during training—is especially important in real-world scenarios, 

where collecting anomalous samples is challenging due to their 

rarity and unpredictability. 

This task builds upon the series of DCASE challenges from 

2020 to 2024, and introduces several important refinements in 

DCASE 2025 Task 2[1]–[3]. Like previous years, participants 

must build models using only normal sounds (unsupervised ASD, 

or UASD) and handle domain shifts caused by changes in ma-

chine operation or background noise. Since DCASE 2023, the 

challenge has also required models to adapt to completely new 

machine types, with no hyperparameter tuning allowed post-

deployment. This year, a new element has been introduced: 

participants may optionally use additional clean machine sounds 

or noise-only recordings to improve performance[4]. This addi-

tion reflects real-world scenarios where such supplementary data 

may be easier to collect during machine idle times or factory 

downtime. Furthermore, systems are expected to function with or 

without auxiliary attribute information, ensuring broader applica-

bility and robustness. 

To meet these requirements, recent ASD approaches have 

moved beyond traditional reconstruction-based methods, such as 

autoencoders, toward embedding-based strategies.[5] These 

methods use powerful pre-trained audio models to extract high-

level features from sound data, followed by similarity-based 

techniques such as K-Nearest Neighbors (KNN) or distance-

based scoring for anomaly detection[6]. Embedding-based ap-

proaches have shown strong generalization ability, especially 

under domain shifts or unseen machine types, and offer a practi-

cal balance between performance and simplicity. In this work, we 

adopt such a strategy, leveraging multiple pre-trained embedding 

models and fusing their outputs to improve detection accuracy 

and robustness. 

2. METHOD 

In this section, we describe our proposed approach for first-shot 

unsupervised anomalous sound detection based on multiple pre-

trained audio embeddings and K-Nearest Neighbors (KNN) 

anomaly scoring, followed by rank-based score fusion. 

We employ a diverse set of pre-trained audio models to extract 

feature embeddings from machine sound recordings. These 

models cover different domains, including general audio classi-

fication, speech, and music, aiming to capture complementary 

acoustic characteristics. Specifically, we utilize the following 

models: BEATs[7], EAT[8], M2D[9], dasheng base, dasheng 

06B, dasheng 12B[10], and MuQ[11]. Each model processes the 

input audio and outputs fixed-dimensional embeddings that 

represent the sound’s high-level features. 

For each embedding type, we build a reference feature set 

from the normal training data. During inference, anomaly scores 

are computed for each test sample by calculating its distance to 

its K nearest neighbors in the normal reference set within the 

embedding space. Typically, Euclidean or cosine distance met-

rics are used. The rationale is that anomalous samples will lie 

farther away from the cluster of normal embeddings, yielding 

higher anomaly scores. 

To leverage the complementary strengths of different em-

bedding models, we perform late fusion of their anomaly scores. 

Instead of directly averaging raw scores—which may be on 



Detection and Classification of Acoustic Scenes and Events 2025  Challenge   

different scales—we convert scores into rankings for each model, 

reflecting the relative anomaly severity of samples. The final 

anomaly score for each test sample is obtained by aggregating 

these ranks using a weighted or unweighted combination strate-

gy. This rank-based fusion enhances robustness and mitigates 

the effect of inconsistent score distributions across models with-

out requiring additional training or hyperparameter tuning. 

3. EXPERIMENT 

We evaluated the performance of each pre-trained model using 

the official DCASE evaluation metrics, including AUC, pAUC, 

and average precision (AP), to ensure fair and consistent com-

parison across systems. The results indicate that models pre-

trained on AudioSet—such as EAT, M2D, and MuQ—tend to 

outperform those trained on other domains across most machine 

types. We believe this advantage is not only due to the diversity 

of acoustic events in AudioSet, but more importantly because 

AudioSet contains some machine-related sounds that partially 

overlap with the target domain of DCASE Task 2. This domain 

overlap may help such models learn representations that are 

inherently more suitable for anomalous machine sound detection. 

In contrast, models pre-trained on speech or music datasets, such 

as Dasheng-06B, Dasheng-12B, and BEATs, generally show 

inferior overall performance, despite often having significantly 

larger model sizes. This is likely due to the domain gap between 

their training data and the target industrial sound domain. Never-

theless, we observed complementary behavior in some cases. 

For example, Dasheng-12B achieved the best results on specific 

machine types where EAT performed poorly, suggesting that 

speech-based models can still capture useful patterns under 

certain conditions. Interestingly, this implies that fine-tuning 

with section-level attribute information may be especially effec-

tive for speech or music models, as it could help reduce the 

domain mismatch and enhance their ability to detect anomalies 

in unfamiliar sound types. 

Due to time constraints, we did not apply attribute-aware 

fine-tuning to all models. We only conducted full fine-tuning 

with section-level attributes on the BEATs model. While this 

helped improve domain-specific performance in some scenarios, 

the overall gain in the official pAUC score was limited. There-

fore, we chose not to include those results in the final submis-

sion, nor to extend the fine-tuning process to other models. This 

decision was made as a practical trade-off durin during the chal-

lenge period, but we acknowledge it as a limitation of our sys-

tem. 

We submitted three systems in total. One was the official 

baseline_MSE to remain aligned with the DCASE baseline. The 

second was a standalone EAT model, which showed the best 

overall performance among all individual models. The third was 

an ensemble of EAT and M2D, using weighted averaging. Alt-

hough this ensemble did not surpass EAT, it significantly out-

performed M2D alone, indicating that the ensemble was effec-

tive in leveraging their complementarity. We also considered 

integrating all the evaluated pre-trained models, but this ap-

proach introduced substantial computational and memory over-

head while failing to exceed the performance of the best single 

model. Notably, Dasheng-12B showed strong complementarity 

with EAT, achieving top results on machine types where EAT 

struggled. Despite this, the large-scale ensemble was not submit-

ted due to practicality. The submitted system performances can 

be referenced directly from the results presented in Table 1 
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  Baseline 

MSE 

Baseline 

MAHALA 

BEATs EAT M2D Dasheng 

base 

Dasheng 

06B 

Dasheng 

12B 

MuQ 

 

ToyCar 

AUC(Source) 71.05% 73.17% 75.76% 83.4% 71.08% 73.38% 75.5% 75.38% 76.74% 

AUC(Target) 53.52% 50.91% 58.98% 59.74% 58.56% 58.5% 56.46% 47.98% 52.66% 

pAUC 49.7% 49.05% 52.11% 55.63% 51.95% 51.68% 53.15% 51.47% 53.05% 

 

ToyTrain 

AUC(Source) 61.76% 50.87% 85.04% 79.74% 80.72% 77.08% 76.88% 75.58% 85.56% 

AUC(Target) 56.46% 46.15% 69.8% 66.6% 67.06% 54.1% 52.76% 45.98% 56.94% 

pAUC 50.19% 48.32% 53.84% 55.1% 52.05% 48.79% 49.68% 49.36% 52% 

 

Bearing 

AUC(Source) 66.53% 63.63% 60.56% 75.14% 64.12% 70.38% 66.8% 67.18% 58.26% 

AUC(Target) 53.15% 59.03% 48.02% 61.28% 57.58% 56.86% 57.1% 56.28% 51.8% 

pAUC 61.12% 61.86% 57.56% 61.05% 60.58% 61.37% 60.53% 61.36% 56.42% 

 

Fan 

AUC(Source) 70.96% 77.99% 61.2% 57.82% 65.83% 63.06% 57.04% 66.54% 59.46% 

AUC(Target) 38.75% 38.56% 41.2% 47.72% 45.58% 49.64% 51.16% 46.96% 46.87% 

pAUC 49.46% 50.82% 48.79% 50.37% 51.05% 50.53% 50.58% 49.84% 48.42% 

 

Gearbox 

AUC(Source) 64.8% 73.26% 62.5% 64.04% 64.7% 66.54% 66.68% 67.9% 64.4% 

AUC(Target) 50.49% 51.61% 51.24% 49.76 51.64% 53.02% 52.08% 53.52% 52.32% 

pAUC 52.49% 55.07% 55.05% 52.63% 52.53% 54.32% 52.53% 55.63% 53.21% 

 

Slider 

AUC(Source) 70.1% 73.79% 75.44% 77.04% 75.36% 75.1% 77.56% 76.76% 73.4% 

AUC(Target) 48.77% 50.27% 52.9% 61.3% 52.77% 53.56% 52.72% 53.56% 51.4% 

pAUC 52.32% 53.61% 51.21% 54.16% 52.58% 51.84% 52.37% 52.47% 50.8% 

 

valve 

AUC(Source) 63.53% 56.22% 72.8% 76.32% 74.3% 54.36% 52.32% 58.64% 71.11% 

AUC(Target) 67.18% 61.0% 76.7% 86.74% 77.96% 64.22% 65.2% 71.98% 57.86% 

pAUC 57.35% 52.53% 51.53% 74.84% 67.53% 54.47% 52.21% 58.37% 60.95% 

Table 1 Detection performance (in %) of different pre-trained models on each machine type. The evaluation metrics include Area Under 

the Curve (AUC) for both source and target domains, as well as partial AUC (pAUC) at 10% false positive rate. Models include the 

official baselines (MSE and MAHALA), models pre-trained on AudioSet (EAT, M2D, MuQ), speech-based models (Dasheng-base, 

Dasheng-06B, Dasheng-12B), and a music-based model (BEATs). Bold values (if any) indicate the highest performance per row. 

 

 


