
Detection and Classification of Acoustic Scenes and Events 2025 Challenge

PARAMETER-EFFICIENT TUNING OF LARGE AUDIO-LANGUAGE MODELS FOR DCASE
2025 CHALLENGE TASK5

Technical Report

Pengfei Cai†, Yanfeng Shi†, Qing Gu†, Nan Jiang†, Yan Song

National Engineering Research Center of Speech and Language Information Processing,
University of Science and Technology of China, China

ABSTRACT
In this technical report, we describe our systems devel-
oped for DCASE 2025 Challenge Task5. Our system is
mainly based on parameter-efficient tuning of large audio-
language models, e.g., Qwen2-Audio and Kimi-Audio.
The training process is conducted using Low-Rank Adapta-
tion (LoRA) and divided into two stages: Supervised Fine-
Tuning (SFT) and Reinforcement Learning (RL). In addition,
we reformatted the annotations of the AudioSet-Strong and
MMAU datasets into a question-answer format to augment
the official task dataset. Our final system achieves an accu-
racy of 80.0% on the development set.

Index Terms— Audio Question Answering, Large
Audio-Language Models, Low-Rank Adaptation, Reinforce-
ment Learning.

1. INTRODUCTION

Recent advancements in large audio-language models [1,
2, 3, 4] have significantly advanced the field of audio un-
derstanding and analysis. These models are typically pre-
trained on large-scale audio-text paired corpora covering di-
verse tasks such as automatic speech recognition, speech
emotion recognition, and audio event classification. Through
multi-task pre-training, they acquire general-purpose audio-
language representations that can be efficiently adapted to
downstream applications.

To specifically evaluate the audio understanding and rea-
soning capabilities of these models, the DCASE 2025 Chal-
lenge Task 5 introduces the Audio Question Answering
(AQA) benchmark. This task requires models to listen to
an audio clip, interpret its content, and answer a natural lan-
guage question grounded in the acoustic information. Un-
like conventional classification tasks, AQA demands not only
perceptual understanding of sound events but also contextual
reasoning and temporal inference across diverse domains.
The challenge is divided into three sub-tracks, each designed
to test different facets of audio comprehension:
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• Bio-acoustics QA – This subset focuses on recognizing
and understanding marine mammal vocalizations. Mod-
els are tasked with identifying species and specific vocal-
ization types from audio clips sourced from the Watkins
Marine Mammal Sound Database. Success in BQA re-
quires both knowledge of biological sound-emitting be-
haviors and auditory perception.

• Temporal Soundscapes QA – Here, the challenge
centers on temporal reasoning. Given environmental
recordings containing multiple overlapping or sequen-
tial events, models must answer questions about event
order, onset/offset times, or duration. This sub-task tests
a model’s ability to detect temporal boundaries and re-
late sound events in time.

• Complex QA – This subset focuses on complex ques-
tion answering grounded in audio understanding. Mod-
els must perform high-level reasoning—e.g., identifying
overlapping sound events, interpreting sequences of au-
ditory phenomena, or discerning abstract relationships
implied by the soundscape.

In this challenge, we adopt a parameter-efficient tuning
strategy to adapt large audio-language models to the three
sub-tasks of AQA. Our solution leverages Qwen2-Audio
and Kimi-Audio as foundation models, with Low-Rank
Adaptation (LoRA) [5] applied for efficient fine-tuning. The
training process follows a standard two-stage post-training
paradigm: Supervised Fine-Tuning (SFT) with constructed
prompts, followed by Group Relative Policy Optimiza-
tion (GRPO) based reinforcement learning (RL) to further
improve accuracy and consistency. To enhance temporal
reasoning, we reformatted a subset of AudioSet-Strong
into QA pairs targeting event counting, sequencing, and
duration. Our best model achieves 80.0% accuracy on the
development set, demonstrating strong generalization across
the three AQA sub-tasks.
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2. METHODOLOGY

2.1. Foundation Models

2.1.1. Qwen2-Audio

Qwen2-Audio [3] is a large-scale audio-language model
developed by Alibaba Group, consisting of a Whisper-
large-v3-based audio encoder and a Qwen-7B language de-
coder. In this work, we adopt the instruction-tuned vari-
ant Qwen2-Audio-7B-Instruct as our base model.
Qwen2-Audio is trained via a three-stage pipeline: multi-
task pre-training with natural language prompts, SFT, and
GRPO-based RL. It supports both audio analysis and voice
chat modes, enabling seamless multi-modal interaction with-
out explicit switching. The model achieves state-of-the-
art performance on benchmarks such as AIR-Bench and
VocalSound, and its strong generalization and instruction-
following capabilities make it well-suited for DCASE 2025
Task 5, particularly for temporal reasoning and complex au-
dio understanding.

2.1.2. Kimi-Audio

Kimi-Audio [6] is an open-source audio-language foun-
dation model developed by Moonshot AI, featuring a hybrid
architecture that integrates a Whisper-large-v3-based audio
tokenizer with a 7B-scale language decoder. In this study, the
instruction-tuned variant Kimi-Audio-7B-Instruct is
adopted as the base model. The model is pre-trained on over
13 million hours of diverse audio data using a combination of
uni-modal tasks, audio-text alignment tasks, and interleaved
multi-modal tasks. To bridge the modality gap between au-
dio and text, a dual-token input format—comprising dis-
crete semantic tokens and continuous acoustic features—is
employed and processed at a resolution of 12.5 Hz. Al-
though only the pre-trained model is utilized without fur-
ther SFT, Kimi-Audio exhibits strong audio representa-
tion and generalization capabilities, making it well-suited for
DCASE 2025 Task 5, especially in addressing complex audio
question answering tasks across Bio-acoustics QA, Temporal
Soundscapes QA, and MMAU [7].

2.2. Data Preparation and Augmentation

To supplement the limited training data available for this
task, we extended our training set by reformatting the annota-
tions of the AudioSet-Strong [8] dataset into question answer
pairs while using the MMAU dataset [7].

For the MMAU dataset, we utilized the test-mini
subset containing 1,000 audio QA samples. Each sample in-
cludes:

Sample = {Audio, Q,Acorrect, {D1, D2, D3}}, (1)

where Di represents distractors. We standardized these sam-
ples by adding letter codes to match the task format.

The original AudioSet Strong annotations follow an on-
set offset event-label format. Our restructuring pipeline in-
volved:

• Removing ambiguous event tags
• Temporal relationship extraction, including event occur-

rence sequence and duration
• Generate temporal audio QA samples

Based on task dataset analysis, we categorized questions
into four distinct types:

Category Example
Counting How many different sounds are in the audio clip?
Sequencing What is the sequence of the first two sounds in the audio?
Duration What is the duration of the event-label sound?
Frequency How many times does the event-label sound occur?

Table 1: Temporal audio question taxonomy

For each type, we prepared a fixed description of several
questions. Then, for each audio sample in AudioSet Strong,
we randomly generated a type of question and gave the cor-
rect answer. Finally, we called the GLM-4 API to generate
three distractors to form an audio QA sample.

During the training process, for the audio part of the sam-
ples, we use the SpecAugment in frequency dimension. For
the text part, we shuffle the order of options during data sam-
pling to prevent the model from over-fitting to positional bi-
ases present in the training data.

2.3. Supervised Fine-Tuning

Our SFT approach focuses on adapting the foundation mod-
els to the specific requirements of AQA. We construct de-
tailed prompts that include both the audio content (repre-
sented as embeddings) and the question text, formatted to
guide the model towards generating accurate and informative
answers.

The SFT process focuses on optimizing the answer gen-
eration while preserving the model’s ability to effectively
process audio inputs. Given a sample (q,x), where q de-
notes the question, and x = {x1, x2, . . . , xT } denotes the
answer sequence of length T , the objective is to maximize
the probability of the next answer token conditioned on the
previous tokens and the question:

LSFT = −
T∑

t=1

logP (xt | {x<t},q) (2)

2.4. GRPO-based Reinforcement Learning

To further enhance the performance of large audio-language
models on the AQA task, we explore RL following SFT to
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Table 2: Performance on development set

Model Accuracy

Part1 Part2 Part3 Arithmetic Mean Weighted Mean

Qwen2-Audio (zero-shot) 30.0% 39.2% 49.6% 39.6% 45.0%
Kimi-Audio (zero-shot) 43.3% 42.5% 60.3% 48.7% 53.8%
Qwen2-Audio (SFT) 82.4% 59.3% 80.0% 73.9% 75.2%
Qwen2-Audio (SFT+RL) 83.0% 62.6% 80.1% 75.2% 76.1%
Kimi-Audio (SFT) 87.5% 56.8% 85.3% 76.5% 78.5%
Both (SFT+Ensemble) 88.0% 60.1% 86.3% 78.1% 80.0%

strengthen its generalization capabilities. Our exploration is
based on the Qwen2-Audio-7B-Instruct model [3],
and we leverage the GRPO [9, 10] algorithm, which eases
the burden of training an additional value function approxi-
mation model in proximal policy optimization (PPO) [11].

Specifically, given an input question q, a group of G out-
puts o = {o1, o2, · · · , oG} is first sampled from the old pol-
icy πθold . The corresponding rewards r = {r1, r2, · · · , rG}
are then computed using a rule-based reward function that
evaluates correctness: if a response provides the correct an-
swer, it receives a reward of +1; otherwise, it is assigned a
reward of 0. We employ the average reward as the baseline
and the advantage is computed as:

Âi,t = r̃i =
ri −mean(r)

std(r)
. (3)

Subsequently, the policy model πθ is optimized by maximiz-
ing the following objective:

JGRPO(θ) = E[q,o ∼ πθold(O|q)][
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
Âi,t,

clip
(

πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

]

− βDKL[πθ∥πref]

}]
,

(4)
where πref denotes the reference policy, adopting the initial
SFT model in this work, DKL serves to regularize the KL
divergence between the trained policy and the reference, ϵ
is the clipping threshold introduced in PPO [11] to stabilize
training, and β is the scaling coefficient for the KL penalty.

3. EXPERIMENTS

3.1. Experiment Setting

All experiments were conducted on 8 NVIDIA A800 GPUs
using bf16 mixed-precision training and optimized with

DeepSpeed ZeRO Stage 2. For the Kimi-Audio model,
training was performed for 8 epochs with a learning rate
of 5e-5, batch size of 32, and a LoRA rank of 16. For the
Qwen2-Audio model, the supervised fine-tuning stage was
conducted for 8 epochs with a learning rate of 5e-5, batch
size of 32, and LoRA rank of 8. The subsequent GRPO-
based RL stage was trained for 3 additional epochs with a
reduced learning rate of 5e-6, batch size of 8, gradient ac-
cumulation steps of 5 (resulting in an effective batch size of
40), a sampling group size of G = 6, a clipping threshold of
ϵ = 0.2, a scaling coefficient for the KL penalty of β = 0.1.

On the development set, in addition to single-model in-
ference, we adopted an ensemble strategy by integrating
the predictions of multiple fine-tuned models (denoted as
Ensemble). Specifically, we introduce a lightweight neu-
ral module, which takes as input the prediction logits from
multiple fine-tuned models and outputs a fused probability
distribution. Each model’s logits are first adjusted using a
learnable temperature parameter to calibrate confidence via
temperature scaling. Subsequently, the softmax-normalized
probabilities from each model are aggregated using learnable
ensemble weights, which are also optimized during training.
Both the weights and temperature parameters are updated via
backpropagation to minimize the cross-entropy loss against
ground-truth labels. The training process is performed us-
ing the Adam optimizer [12] over 500 steps. This approach
allows the ensemble to dynamically learn both the relative
reliability and calibration of each individual model, leading
to improved overall prediction accuracy.

3.2. Results

As shown in Table 2, GRPO-based RL significantly im-
proved the performance of Qwen2-Audio on Task Part 2.
In terms of model comparison, Kimi-Audio outperformed
Qwen2-Audio on Task Parts 1 and 3, but under-performed
on Task Part 2. By integrating the predictions of both models,
the ensemble achieved the best overall performance. Among
the three sub-tasks, Task Part 2 proved to be the most chal-
lenging, indicating a potential direction for future improve-
ment.
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4. CONCLUSION

In this technical report, we present our solution for DCASE
2025 Challenge Task 5, focusing on parameter-efficient tun-
ing of large audio-language models for the AQA task. By
leveraging Qwen2-Audio and Kimi-Audio as founda-
tion models, we adopt a two-stage training framework con-
sisting of SFT and GRPO-based RL. To enhance temporal
reasoning capabilities, we further introduce an augmented
QA dataset reformulated from AudioSet-Strong. Experi-
mental results on the development set demonstrate that both
Qwen2-Audio and Kimi-Audio achieve strong perfor-
mance across the three AQA sub-tasks, with the ensem-
ble of both models yielding the highest accuracy of 80.0%.
Our findings highlight the effectiveness of lightweight tun-
ing strategies for adapting large pre-trained models to com-
plex audio reasoning tasks, and point to future opportunities
in improving temporal understanding and generalization in
open-domain AQA.
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