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ABSTRACT 

This report contains a description of the systems submitted 

to task 2 “First-Shot Unsupervised Anomalous Sound 

Detection for Machine Condition Monitoring” of the 

DCASE2025 Challenge. The anomaly detection model 

based on the attention mechanism and the convolutional 

networks enhanced autoencoder (ACAE) is proposed. In 

addition, we introduced the DensitySoftmax and the 

dynamic topic mixture model (DtMM) into the previous 

unsupervised model to represent the distance between 

abnormal samples and normal samples. In experimental 

evaluations, it is shown that both modifications improve the 

resulting performance and that the proposed. By introducing 

domain generalization methods, our model achieved 

improved metrics on the target domain compared to the 

baseline model. 

Index Terms— anomalous sound detection, 

unsupervised, domain generalisation, anomaly detection, 

threshold 

1. INTRODUCTION 

Task 2 of the DCASE2025 Challenge[1] is called “First-Shot 

Unsupervised Anomalous Sound Detection (ASD) for 

Machine Condition Monitoring”. ASD focuses on 

identifying whether the sound emitted by the target machine 

is abnormal by solely relying on prior knowledge of normal 

sounds. This is the primary focus of Task 2 in the Detection 

and Classification of Acoustic Scenes and Events (DCASE) 

Challenge [2-4]. 

The complexity of this task lies in distinguishing 

normal operational noise from genuine anomalies, requiring 

sophisticated algorithms capable of learning from diverse 

acoustic patterns. In practical production environments, the 

diversity of equipment types, complex surroundings, and 

challenges with sound data collection make it difficult to 

develop systems that can accurately identify and classify 

abnormal sounds across different devices and environments. 

The interpretations of the requirements for this task are as 

follows: 

 Only the normal data is used to train the model. This 

method is suitable for scenarios where normal samples 

are abundant and abnormal samples are scarce. 

Through this unsupervised method, the model can learn 

the characteristics of normal data, thereby accurately 

identifying abnormal data when it encounters it. 

 The model has domain generalisation capabilities. 

Aims to solve the problem of generalisation in target 

domains not seen during model training. Its core 

objective is to enable the model to learn features or 

patterns with generalisation capabilities from the 

source domain, thereby performing well in unknown 

but related domains. 

 The model can be used for brand new machine types. 

In practical applications, ASD systems may need to be 

deployed on a variety of different types of machines or 

systems. These machine types may differ significantly 

in many ways. Through data preprocessing, selecting 

appropriate models, and using transfer learning and 

domain adaptation techniques, the generalisation 

ability of the model can be improved. 

 The model can be trained with or without attribute 

information. The ability to be trained with or without 

attribute information is key to achieving model 

flexibility and adaptability. By designing models with 

optional feature inputs, performing multi-task learning, 

standardized data pre-processing, and conducting 

multi-scenario validation, it is possible to ensure that 

the model works effectively with or without attribute 

information. 
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This year, submitted systems not only had to be trained 

using only normal data and to be robust to possible acoustic 

domain shifts, which may for example be caused by 

changing machine parameters or the background noise, but 

also had to be capable to effectively handle completely 

novel machine types without having access to recordings of 

similar machines and not always having access to machine 

parameter settings.  

2. SYSTEM DESCRIPTION 

2.1. Models based on the dual-branch CNN 

The systems described in this chapter is based on the dual-

branch convolutional neural networks model [5]. We use the 

DensitySoftmax and the DtMM to replace the original K-

means method to calculate the anomaly distance. 

In terms of data preprocessing, two different input 

features are extracted. As a first input feature, a magnitude 

spectrogram with a window size of 1024 and a hop size of 

512 is used. For each magnitude spectrogram, the temporal 

mean, calculated by using only the frames belonging to the 

non-padded signal values, is subtracted to remove constant 

frequency information. As a second input feature, the 

magnitude of the spectrum belonging to the entire 

waveform is used. Only frequencies up to 8 kHz are 

retained, which is equal to half of the sampling rate, are 

kept. 

The embedding model consists of two different CNNs 

as sub-networks, one for each of the two feature branches, 

and has the same general architecture as the embedding 

model used in before[5]. The sub-network for the 

spectrogram branch has a modified ResNet architecture [6] 

with four residual blocks, a max-pooling operation over the 

time dimension in combination with a flattening operation 

and a linear layer. The sub-network for the spectrum branch 

consists of three one-dimensional convolutions with large 

strides are applied to downsample the input followed by a 

flattening operation and and five dense layers. In both 

networks, ReLU is chosen as an activation function and 

batch normalization [7] is applied. To obtain a single 

embedding for each input sample, the embedding of both 

sub-networks are concatenated. More details about the 

network architecture can be found in the paper[8].  

2.1.1 The CNN-DS model 

In terms of abnormal distance detection, Traditional 

methods typically rely on strategies such as distance 

metrics, reconstruction errors, or probability density 

modelling to determine whether test samples deviate from 

the normal distribution. In recent years, with the 

development of deep representation learning, researchers 

have increasingly favoured anomaly detection in 

embedding spaces. Among these, the DensitySoftmax 

method[9-11], as a probability density-based anomaly 

scoring formula, combines Gaussian density estimation 

with softmax classification principles, offering good 

interpretability and detection performance, particularly 

suitable for unsupervised or semi-supervised anomaly 

detection tasks. 

The DensitySoftmax method assumes that in the 

feature space, the embedded features 𝑓(𝑥) of each category 

follow a multidimensional Gaussian distribution. 

Specifically, for each category 𝑐𝑖 in the known training data 

(typically normal data), we can separately construct the 

distribution parameters of that category in the embedding 

space: the mean vector 𝜇𝑖 and the covariance matrix Σ𝑖. 
During the inference stage, for any test sample 𝑥, 

DensitySoftmax calculates its probability density 𝑝(𝑥∣𝑐𝑖) 
across all class distributions and normalises it via softmax 

to obtain its relative ‘similarity’ distribution across all 

classes. If this distribution is not concentrated (e.g., the 

density values are smoothly distributed or all densities are 

very small), the sample can be deemed to have a high 

degree of anomaly. 

Strong probabilistic modelling capabilities: Compared 

to simple centre distance or reconstruction error, this 

method can model category boundaries and distribution 

structures, making it suitable for handling multimodal tasks 

with high intra-class variability. No need for training with 

outlier samples: Only normal samples are required for 

modelling, making it suitable for one-class learning 

scenarios. Simple structure, compatible with any encoder: 

The method relies solely on the embeddings of training 

samples and does not depend on network structure, giving 

it strong generalisability. 

2.1.2 The CNN-DtMM model: 

The DtMM is the dynamic topic model (DTM) 

combined with a t-distribution early warning model 

modelling method. This method fixes the order structure of 

sub-components within the mixture model and establishes 

the parameter evolution relationship between the mixture 

model and the baseline mixture model based on DTM 

modelling principles. The new mixture model evolves from 

the baseline mixture model combined with input data. By 

calculating the difference between the mixture model and 

the baseline mixture model, it characterises the difference 

between the real-time operating condition of the equipment 

and its normal state, thereby achieving condition 

monitoring of the equipment. 

Construct the training sample set based on the reduced-

dimensional feature vectors. The training sample set is 

divided into the model training sample set and the threshold 

training sample set. The specific steps for training the 

DtMM model are as follows: 
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1) Input the model training sample set and use the 

Dirichlet process to generate the prior parameters of the 

mixture model, i.e., the number of submodels and weight 

parameters in the baseline mixture model. 

2) Based on the results from step 1), combine 

variational inference to calculate the posterior parameters 

of the baseline mixture model, obtain the baseline mixture 

model, and save it. 

3) Input the threshold training sample set, train m 

normal state mixture models, and calculate the distance 

between each mixture model and the baseline mixture 

model, i.e., the KL divergence. Calculate the mean μ and 

standard deviation σ of the m KL divergences, and the 

threshold  is set, as shown in Eq (1). 

 T = + k  (1) 

Input the reduced-dimensional feature vector of the 

sample to be tested, establish a mixed model, and calculate 

the KL divergence with the benchmark mixed model. If 

KL > T, it is determined to be abnormal, triggering a fault 

warning;if KL < T, it is determined to be normal. 

2.2. The ACAE model 

To effectively address the domain generalization problem 

in acoustic signal anomaly detection, The novel anomaly 

detection model based on the attention mechanism and the 

convolutional networks enhanced autoencoder (ACAE) is 

proposed, where the noisy-arcmix loss function and the 

minimum covering volume (MCV) method are introduced. 

This method primarily consists of four parts: the feature 

extraction, the anomaly detection model construction, the 

self-learning threshold, and the model testing. 

1) The feature extraction: The short-time Fourier 

transform (STFT) is used to obtain the time-frequency 

domain feature, and the averaging strategy based on the 

time window is introduced, which not only effectively 

suppresses the transient noise interference but also 

enhances the robustness and expressiveness of features in 

the time dimension. 

2) The anomaly detection model construction: The 

encoder is employed to extract the deep features through 

the convolution and pooling operations. Moreover, the 

lobal dependency modelling capabilities is improved 

through the multi-head attention module, the features 

independent of domain attributes are extracted. The 

decoder is used for signal reconstruction and assists in 

effectively constraining the latent space. During the 

training process, the mean squared error (MSE) and the 

noisy-arcmix are used as loss function. The noisy-arcmix is 

an improved version of the arcmix loss function, which 

integrates contrastive learning strategies with angular 

boundary constraints [15]. The embedding features that are 

both discriminative and robust are constructed by 

regulating the angles and performing mixed interpolation 

on the distributions of different class samples in the latent 

space. 

3) The self-learning threshold: The threshold self-

learning method based on the cosine similarity and the 

MCV is adopted. The principle the MCV is to take the 

mean of normal sample features as the center of the sphere 

and construct the smallest radius sphere that can cover all 

or most normal samples. Specifically, the cosine similarity 

of the normal samples is calculated, and the minimum 

sphere coverage radius corresponding to the farthest 

normal sample is obtained through the MCV with the 

cosine centre as the sphere centre, which is set the threshold. 

4) The model testing: The test sample are processed 

using the STFT to extract time-frequency features, and the 

potential features are extracted using the trained ACAE 

model. The cosine similarity between the test sample and 

the reference normal sample is calculated, and the relative 

position of the test sample in the feature space is obtained 

in combination with the MCV and compared with the 

threshold. 
 

3. EXPERIMENT RESULTS 

In the released DCASE2025 development set [15,16], we 

compare our systems with the baseline systems of the 

DCASE 2025 Challenge Task 2, i.e., AE-MSE and AE-

MAHALA [17]. The results are given in Table 1, where we 

can see that Our system outperforms the baseline system in 

the target domain.  

4. CONCLUSION 

In this report, we submitted three ASD systems for Task 2 

of the DCASE2025 competition. Systems 1 and 2 were 

obtained by improving the anomaly distance calculation 

model on the existing unsupervised system, and System 3 

proposes an anomaly detection model based on attention 

mechanisms and convolutional neural network-enhanced 

autoencoders. The experimental results show that our 

system significantly outperforms the baseline system. 
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Table 1: Detection results of three submitted systems and baseline systems on the development set 

Machine Metric Baseline_mse Baseline_MAHALA CNN-DS CNN-DtMM ACAE 

bearing 

AUC-s 66.5% 63.6% 53.0% 55.0% 55.0% 

AUC-t 53.2% 59.0% 54.4% 57.0% 61.7% 

pAUC 61.1% 61.9% 54.4% 55.7% 58.1% 

fan 

AUC-s 80.0% 78.0 % 56.6% 56.0% 47.4% 

AUC-t 38.8% 38.6% 52.0% 50.0% 57.7% 

pAUC 49,5% 50.8% 50.2% 50.3% 51.9% 

gearbox 

AUC-s 64.8% 73.3% 60.3% 43.0% 41.4% 

AUC-t 50.5% 51.6% 77.0% 56.0^ 57.0% 

pAUC 52.5% 55.1% 47.7% 49.9% 47.8% 

slider 

AUC-s 70.1% 73.8% 54.2% 50.0% 46.3% 

AUC-t 48.8% 50.3% 55.5% 48.0% 59.1% 

pAUC 52.3% 53.6% 50.4% 49.1% 52.7% 

ToyCar 

AUC-s 71,1% 73.2% 42.5% 58.0% 50.0% 

AUC-t 53.5% 50.9% 54.4% 53.0% 46.9% 

pAUC 49.7% 49.1% 49.5% 50.4% 42.7% 

ToyTrain 

AUC-s 61.8% 50.9% 36.6% 47.0% 55.7% 

AUC-t 56.5% 46.2% 61.6% 50.0% 52.6% 

pAUC 50.2% 48.3% 50.9% 48.7% 53.7% 

valve 

AUC-s 63.5% 56.2% 46.3% 85.0% 57.6% 

AUC-t 67.2% 61.0% 72.0% 69.0% 47.3% 

pAUC 57.4% 52.5% 47.7% 62.9% 52.6% 
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