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ABSTRACT 

We describe our submitted systems for DCASE2025 Task 5 in 

this technical report: Audio Question Answering. Our proposed 

systems focus on training a Large Audio Language Model 

(LALM) with carefully curated training datasets and training 

sessions, based on a carefully chosen multi-modality baseline 

model. We choose Qwen 2.5 Omni 7B, which has shown impres-

sive performance on audio and vision related tasks, as the base to 

initialize the audio encoder and LLM component of the proposed 

systems. We collect and transform multiple audio-text datasets 

for the training, the total number of samples reached 800K, 

covering multiple audio related tasks, such as closed Audio QA, 

opened Audio QA, audio caption, and audio temporal under-

standing and reasoning. We curated a multi-stage training proce-

dure to help the model learning to focus on different aspects of 

the data, and to learn from easy to hard during the training pro-

cess. In the post-training stage, we adopt different training meth-

ods, including fine-tune (SFT) and GRPO, to take advantage of 

their different abilities in generalization and memory. With these 

carefully considered designs, our model not only learn to answer 

the questions correctly in content, but also in the required format 

specified in prompts, which simplify the post-process procedure 

for evaluation. Our proposed systems achieve top-1 accuracy 

81.3% on the DCASE Task 5 development set. 

 

Index Terms— LALM, LLM, Audio, Multi-modality 

 

1. INTRODUCTION 

In recent years, the rapid development of artificial intelligence 

has led to significant breakthroughs in natural language pro-

cessing (NLP) and general artificial intelligence (GAI). Due to 

the advancements in Large Language Models (LLMs) [7, 8, 9, 11, 

12, 13, 14], multi-modality LMs have also made a significant 

progress, such as Vision LMs [10, 19, 20, 26], Audio LMs [5, 6, 

23, 27], and Omni LMs [25]. Among these developments, Large 

Audio Language Models (LALMs) have emerged as a transform-

ative technology capable of understanding, generating, and ma-

nipulating audio data with human-like proficiency. LALMs 

extend the capabilities of traditional text-based large language 

models (LLMs) by incorporating multimodal learning, enabling 

them to process and synthesize speech, music, and environmental 

sounds. The core architecture of LALMs leverages deep neural 

networks, particularly transformer-based architectures, trained on 

vast datasets of audio and corresponding textual information. 

These trainings enables LALMs to perform tasks such as speech-

to-text transcription, text-to-speech synthesis, voice cloning, and 

even contextual dialogue understanding in audio formats. 

 

Even though significant progress has made in several domains, 

especially in the speech-text understand and conversion, such as 

ASR, TTS, STT, and Translation, the research of general LALMs 

are still lag behind LLM and Vision LM, especial in the domains 

of general or ambient environment sounds understood. As an 

open-source automatic speech recognition (ASR) model, Whis-

per [22] is designed to convert spoken audio into text with high 

accuracy and robustness. It was trained on an extensive dataset of 

approximately 680,000 hours of multilingual and multitask su-

pervised data, enabling it to handle diverse languages, accents, 

and environments effectively. Due to its impressive performance 

and transformer-based architecture, several LALMs has choose it 

as the audio encoder, such as Qwen2 audio, Qwen 2.5 Omni, and 

Kimi-Audio. These LALMs combined an audio encoder with a 

pre-trained LLM, and may also connect an audio decoder for 

generating final audio output. The components of LALMs are 

then thoroughly trained on a vast and diversity audio-text or 

multi-modality datasets. These LALMs have shown powerful 

performance not only in speech-text related tasks, but also in 

general or ambient sounds understanding and reasoning. 

 

Audio Question Answering (AQA) is task focuses on advancing 

question-answering capabilities in the realm of “interactive audio 

understanding,” covering both general acoustic events and 

knowledge-heavy sound information within a single track. It is 

one of ideal application areas of LALMs. The AQA not only 

requires understanding and reasoning to the input audio and 

question, but also requires the LALMs to integrate external 

knowledge, such as common sense and math capability to resolve 

the question.  Because of the generative nature of large language 

models, for open AQA, it may requires semantic metrics to eval-

uate its performance, such as BERT-Score [28], GPT-Eval [29], 

or even human judgment due to the answers‟ subjectivity. For the 

closed AQA, the instruction fine-tuned LALMs may generate 

specified answer according to the prompt, so the accuracy may be 

as the evaluation metric easily. The DCASE 2025 Task 5 [1, 2, 3, 

4]: Audio Question Answering encourages participants to devel-

op systems that can accurately interpret and respond to complex 

audio-based questions (i.e., (A), (B), or (C) option), requiring 

models to process and reason across diverse audio types. In this 

technical report, we describe our submitted systems for this task.  

 

This technical report is organized as follows: Section 2 details 

the architecture of our systems, the audio-text datasets and the 

training procedure. In Section 3, we demonstrate the experi-

mental setting and results of our proposed scheme. 
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2. PROPOSED METHOD  

This section introduces the model architecture, the training 

datasets and the training courses arrange for our systems. 

2.1. Architecture 

Our systems adopt the similar structure with the popular multi-

modality model, Qwen 2.5 Omni [25], except that we do not 

have the vision encoder, and without the audio talker component 

for generating audio output. As illustrated in Figure 1. It con-

tains below three components: (1) an audio encoder that convert 

the Mel-spectrogram of an audio into hidden features. It is simi-

lar with the Whisper-large-v3 model, and is originally taken 

from Qwen2 Audio, with about 600M parameters. (2) An aligner 

layer for projecting the audio feature into LLM‟s sematic space, 

it is a simple linear layer. (3) An LLM model for generating 

response according to the concatenated model input，which 

based on Qwen 2.5 7B model [30]. The parameters for the whole 

system is about 8.3B. These three components are initialized 

from the pre-trained weight of Qwen 2.5 Omni 7B directly. We 

continue training the system with all the collected audio-text 

datasets for couple of stages, keeping different components be 

frozen or trainable during different stages.  

 

 

 
 

Figure1: The system architecture. The Audio encoder is a 

Whisper model, the aligner layer is a linear layer, and the LLM 

is based on QWen 2.5 LM, all of them are initialized from the 

corresponding components of the pre-trained weights of QWen 

2.5 Omni 7B model. 

2.2. Datasets 

We trained and evaluated our model on the DCASE 2025 task 5 

official datasets [3, 4], and collected a couple of external da-

tasets. We details these datasets in following segments. 

 

AVQA: a dataset [21] for audio-visual question answering on 

videos, which are sourced from the VGG-Sound dataset [31]. 

We only used the audios extracted from the videos, paired with 

the corresponding text questions and answers. 

 

Clothov-AQA: is a dataset [24] for Audio question answering 

consisting of 1991 audio files each between 15 to 30 seconds in 

duration selected from the Clotho dataset. For each audio file, 

there are six different questions and corresponding answers, 

which are collected by crowdsourcing using Amazon Mechani-

cal Turk. 

 

Audioset-Strong: this audio dataset [18, 32] contains manually 

labelled audio events from AudioSet clips; each sound event is 

annotated with start-time and end-time timestamps. We believe 

these timestamps would help to improve the system‟s temporal 

reasoning capability. We apply multiple manually written tem-

plates to convert these timestamps to instruction-response format. 

The instructions are constructed with consideration of the occur-

rence sequence of different sound events and their inter-

relationships, the responses are derived from the timestamps and 

corresponding sound event types. For each audio, we generate 

three samples by random chosing three templates, with each 

sample focus on different aspects of the temporal sound events 

occurring in the audio. We filter out the audios having „music‟ 

in their labels, because the Audioset-Strong dataset does not 

annotate the specific music types or musical instruments. 

 

AudioCaps: this is a large-scale dataset [16] of about 46K audio 

clips. All audio clips were labelled with human-written text pairs 

collected via crowdsourcing on the AudioSet dataset. We apply 

templates to convert the captions to instruction-response format, 

where the instruction is manually written such as “Descript the 

audio in details.”, “What happening in the audio?”, and the 

caption is used as the model response. 

 

WavCaps: the captions are generated by ChatGPT, and the 

audio clips are extracted from several sources, include 

Freesound, BBC Sound Effects, SoundBible, and AudioSet 

Strongly-labelled Subset [34]. We convert the captions to in-

struction-response format using the similar method as with 

AudioCaps. 

 

FSD50K: it contains over 51k audio clips (~100 hours) manual-

ly labeled using 200 classes drawn from the AudioSet Ontology 

[17]. For each audio clip, the caption generated by prompting 

ChatGPT (GPT-4) with its sound event tags. The captions are 

convert to instruction-response format with above method. 

 

CompA: the CompA [27, 38], is a collection of two expert 

annotated benchmarks with a majority of real-world audio sam-

ples, to evaluate compositional reasoning in ALMs. CompA-

order evaluates how well an ALM understands the order or 

occurrence of acoustic events in audio, and CompA-attribute 

evaluates attribute-binding of acoustic events. 

 

TACOS: contains 12,358 audio recordings, and corresponding 

47,748 temporally strong audio captions [33]. Each audio file is 

additionally paired with a weak caption, which was automatical-

ly generated from the strong captions using OpenAI‟s gpt-4o-

mini-2024-07-18. We use a set of manually written templates to 

convert these timestamps to instruction-response format. 
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MMAU: is a dataset designed to evaluate multi-modal audio 

understanding models on tasks requiring expert-level knowledge 

and complex reasoning [4]. It comprises 10k carefully curated 

audio clips paired with human-annotated natural language ques-

tions and answers spanning speech, environmental sounds, and 

music. It features 27 diverse tasks, including 12 information-

retrieval types and 15 reasoning types, challenging models to 

perform at the level of human experts in complex, multimodal 

audio understanding. The MMAU dataset have no answers 

public for the corresponding questions. Therefore, we adopt an 

iterative training-labeling-training procedure to utilize this da-

taset. We first train the model on others datasets and a tiny set of 

MMAU: the MMAU-test-mini, which has the answers available. 

Then we use the trained model to answer these questions, at the 

same time, another open source model Kimi-Audio [23] is used 

to predict the answers, we use the common answers as the labels 

to training the model again, and then update the labels iteratively.  

 

For maintaining the diversity of natural language-based instruc-

tions/prompts, we use multiple templates to convert these cap-

tions to instruction-response format, and we also add a format 

requirement in the instruction, which ask the model output the 

answer in a pair of <answer></answer> tags. We filter out some 

audios, which are too short or too long from the datasets; those 

audios may harm the training stability or consume too much 

GPU memory. Finally we got a dataset of about 800k audio-text 

pair samples (some audios may appeared multiple times), cover-

ing multiple areas, such as instruction following, closed AQA, 

and temporal sound events understanding & reasoning and so on.  

2.3. Training procedure 

All the datasets are processed as a unified user-assistant chat 

format that is suitable for supervised training and RL (e.g., 

GRPO). These datasets cover a diversity areas of audio related 

tasks, such as audio caption, sound types identification, sound 

scenes classification, sound event temporal reasoning and so on. 

We prepared a three-stage train course for training our systems 

on these datasets. 

 

Stage 1: only the parameters of LLM is set to be trainable, the 

parameters of other components are frozen. We apply parameter 

effective fine-tune (PEFT) for saving the GPU memory, all the 

linear layers of the LLM are updated during this stage. And all 

the datasets are used for this stage. Because the audio encoder 

and the projector layer are already trained during the training 

procedure of Qwen 2.5 Omni, the objective for this stage is to 

learn the model for answering the questions in the specified 

format. This would make the training of following stages and the 

evaluation more easy and accurate. 

 

Stage 2: the parameters for all of the components are updated 

during this stage. We still apply parameter effective fine-tune 

(PEFT) for saving the GPU memory, and all the datasets are 

used during this stage. We believe by this setting, the model 

would learn to better extract the audio features and make a tie 

connection between the audio and the text (question/instruction). 

 

Stage 3: the parameters for all of the components are updated as 

stage 2, but we use only the closed QA datasets. These closed 

QA datasets contains the questions and the corresponding op-

tions, the model should answer the question with one of the 

provided options. These datasets are more close with the 

DCASE Task5‟s settings, and we could apply the GRPO method 

[35, 36] for fine-tune the model, because the reward functions 

could be derived from the provided options easily. We hope the 

GRPO method would make the model generalize better with 

smaller datasets. 

 

In the stage 3, we tried with different settings and different 

methods to train multiple systems. In addition to GRPO, we also 

applied SFT in this stage to compare the effects of different post-

training methods. 

 

3. EXPERIMENTS AND RESULT 

In this section, we details the experiment settings and the results 

for our submitted systems in DCASE 2025 Task 5.  

3.1. Data preprocessing and Hyper-parameters 

The datasets are pre-processed in a similar manner as the 

QWen2.5-Omni. All the text (questions, options, and answers) 

are tokenized using Qwen‟s tokenizer [14], which applies byte-

level byte-pair encoding with a vocabulary comprising 151,643 

regular tokens. For the audios, all of the audios are resampled to 

a frequency of 16 kHz. We extract 128-channel Mel-spectrogram 

features from the raw audios with the window size setting to 

25ms and the hop size setting to 10ms. The audio features are 

encoded as a sequence of frames by the audio encoder after then, 

with each frame corresponds to 40ms origin audio signal.  

 

For the hyper-parameters, we adopt the cosine learning rate (LR) 

scheduler, the max LR was set to10e-5, and the warmup steps 

were set to 0.05 ratio of the total steps. For each stage, we trained 

about 3-4 epochs. The LORA rank was set to 8, and the LORA 

alpha was set to 32. These hyper-parameters were basicly the 

same during all stages. 

3.2. Results 

We trained multiple systems with some differences on the final 

training stage, e.g., training with SFT or GRPO, and some 

changes on the datasets arrange. Below we report the metric: 

top-1 accuracy, on the DCASE 2025 task 5 development set for 

these systems. 

 

We designated the system, which trained only with SFT method 

as the system_1, and the system that is trained with GROP 

method in stage 3 as system_2. As according to [37], the SFT 

may more easily to memory the samples rather than learning the 

inner patterns, while GRPO could generalize better on unseen 

data, we designed these two different systems for comparing 

their differences. To validate the validation of our scheme, we 

also used the same datasets and procedure to learn a system_3, 

based on the Qwen 2 audio 7B instruct [36], and a lightweight 

system_4, based on the raw Qwen 2.5 omni 3B. 
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As can be seen from Table 1, the system_1 get the best accuracy 

81.3% on the development set. We believe the development set 

is similar with the training set, and SFT could fit better with the 

training set if the training samples is big enough. The system_2 

get an accuracy of 81.1%, which is lower but very close to Sys-

tem_1, we hope it could generalize better. The system_3 get 

73.5% accuracy, and system_4 get 69.9% accuracy on the Task 

5 development set. All the systems‟ performance get a signifi-

cantly improvement than the baselines. 

 

System Stage 

1 

Stage 

2 

Stage 

3 

Acc 

% 
Baselines 

Qwen2 Audio 7B Instruct - - - 49.9 

Qwen2.5 Omni 3B - - - 54.6 

Qwen2.5 Omni 7B - - - 50.8 

Ours 

system_1 SFT SFT SFT 81.3 

system_2 SFT SFT GRPO 81.1 

system_3 SFT SFT GRPO 73.5 

system_4 SFT SFT GRPO 70.1 

 

Table 1: The accuracy of the systems on DCASE 2025 Task 5 

development set. The table details the accuracy of the four sys-

tems on the dev set, trained through three stages with different 

methods. We also list the accuracy for Qwen2 audio 7B instruct 

and Qwen 2.5 omni 7B / 3B, evaluated with the same method. 

Please note that in these baselines, the raw Qwen2.5 Omni 3B 

even get a higher score than raw Qwen2.5 Omni 7B, but after 

training with our datasets and methods, the systems based on 

Qwen2.5 Omni 7B get much higher accuracy. 

 

The results show that the scheme we proposed is efficiency:  

With carefully prepared datasets, designing a progressive multi-

stages training session, from easy to hard, and applying different 

training methods during different stages, could boost the sys-

tem‟s performance on the target tasks. 
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