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ABSTRACT

This technical report gives an overview of our system for task3 with
audiovisual of the DCASE 2025 challenge. We propose a Sound
Event Localization and Detection (SELD) system for stereo sound
event localization and detection in regular video content. Compared
with the baseline, the proposed method pays more attention to the
temporal relationship between modalities. We evaluated our meth-
ods on the dev-test set of the Sony-TAu Realistic Spatial Sound-
scapes 2023 (STARSS23) dataset and we achieve significant im-
provements over the baseline method.

Index Terms— Sound Event Location and Detection, Sound
Event Detection, Direction of Arrival Estimation, Mutlimodal

1. INTRODUCTION

Sound Event Localization and Detection (SELD) integrates tem-
poral identification and classification of active acoustic sources
(Sound Event Detection, SED) with spatial position or direction-
of-arrival (DOA) estimation [1][2][3]. This multimodal capability
underpins critical applications spanning human-robot collaboration,
augmented reality systems, navigation platforms, intelligent home
technologies, and security solutions. Research advancements have
systematically addressed core challenges: detecting polyphonic au-
ditory scenes [4], localizing concurrent same-class events involv-
ing mobile sound sources [5], and suppressing irrelevant external
sounds [6]. Recent developments extend to active source distance
estimation in current evaluations [7]. Although historically audio-
centric, the DCASE challenge has introduced audio-visual tracks in
its latest editions, leveraging the Sony-TAu Realistic Spatial Sound-
scapes 2023 (STARSS23) dataset [8, 9].

This inclusion enables the investigation of SELD as a multi-
modal audio-visual challenge. Vision and audio modalities offer
complementary strengths: visual information delivers high spatial
precision, whereas audio sensing can detect obscured sources. The
present report details the systems we developed and submitted for
the audio-visual track of this challenge. Specifically, we identify
that existing fusion schemes (e.g., Transformer-based feature con-
catenation) fail to adequately model cross-modal temporal depen-
dencies, while accurate Sound Event Localization and Detection
(SELD) critically relies on capturing dynamic spatiotemporal evo-
lution. To address this limitation, we propose an Audio Tempo-
ral Enhancement Module that explicitly captures complex tem-
poral correlations within audio streams and their synchronization
with visual sequences, thereby enriching multimodal fusion with

enhanced contextual information. Furthermore, we demonstrate
that directly employing generic visual features extracted from pre-
trained ResNet-50 [10] introduces domain adaptation issues. These
features frequently lack sufficient representation of spatial cues es-
sential for sound event localization, such as object orientation and
partial occlusion patterns. Consequently, we design a Visual Fea-
ture Enhancement Module that optimizes pre-extracted visual fea-
tures to improve their representational fidelity and discriminative
capacity for SELD-specific localization tasks.

Generally, the audio temporal enhancement module enables dy-
namic modal information interaction understanding during fusion,
while the enhanced visual features provide task-oriented inputs.
This framework substantially improves the robustness and localiza-
tion accuracy of our system for audio-visual SELD.

2. METHOD

2.1. Audio Temporal Enhancement

The proposed Audio Temporal Enhancement Module incorporates
an innovative multi-head attention architecture [11] to address the
critical need for temporal modeling in audio feature representation.
Specifically, the module employs a dual-head self-attention mech-
anism to perform parallelized temporal modeling of audio features
[12]. This design enables simultaneous capture of feature depen-
dencies across multiple temporal scales [13], effectively resolving
the limitation of single-scale temporal modeling in conventional ap-
proaches [1].

In implementation, the module adopts a batch-first data orga-
nization scheme [14], optimizing memory alignment with modern
deep learning frameworks to significantly accelerate computational
efficiency. For feature interaction, the module utilizes a learnable
query-key-value weighting mechanism [15] that dynamically as-
signs attention weights to temporal features. This adaptive weight-
ing strategy allows the model to focus on salient temporal depen-
dencies while suppressing noise components [16]. To regularize the
model, a moderate dropout rate [17] is applied—a value empirically
determined to balance representational capacity and overfitting pre-
vention.

Crucially, the module forms an end-to-end spatiotemporal fea-
ture learning framework through synergistic integration with subse-
quent Transformer decoders [18]. This architectural coupling en-
sures:

1. Effective extraction of hierarchical temporal patterns in au-
dio streams [19]
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Figure 1: : A Overview of our SELD system.The framework include four parts: Feature Extraction, Enhancement Module, Fusion Layers
and Full Connected Layers.

2. Generation of temporally coherent representations that serve
as optimal inputs for cross-modal fusion layers

The design fundamentally bridges temporal feature extraction and
multimodal integration within a unified computational graph [20].

2.2. Visual Features Enhancement

The proposed visual feature enhancement module is designed to
address key challenges in multimodal representation learning [21].
The key resides in a systematically designed transformation path-
way comprising three fundamental operations: First, a linear pro-
jection layer maps features extracted by the pretrained ResNet-
50 model [10] into a unified latent space, achieving cross-modal
alignment while preserving essential spatial topology [22]. Sec-
ond, layer normalization (LayerNorm) [15] performs dimension-
wise standardization to stabilize feature distributions across varying
environmental conditions, effectively mitigating internal covariate
shift during training [16]. Third, ReLU activation functions [23] in-
troduce controlled non-linearity, enabling the modeling of complex
visual pattern interactions. This processing cascade ensures consis-
tent semantic representation across heterogeneous modalities while
maintaining structural integrity of visual features.

The module further incorporates two specialized mechanisms
to enhance representational robustness: Residual connections [10]
orchestrate multi-resolution feature fusion, integrating shallow spa-
tial details with deep semantic abstractions to form comprehensive
hierarchical representations [24]. Complementarily, configurable
dropout regularization [17] employs stochastic feature suppression
to prevent overfitting while promoting feature diversity learning

[25]. The resulting enhanced features exhibit optimized spatial-
semantic coherence, providing superior inputs for downstream mul-
timodal fusion modules [18]. This integrated design significantly
advances joint audio-visual perception capabilities, particularly in
complex spatial localization scenarios requiring precise environ-
mental understanding [26].

2.3. System Design

This paper proposes an end-to-end Multimodal Sound Event Local-
ization and Detection (SELD) framework [18], the core of which
lies in a systematic multimodal co-processing architecture. The
model consists of four modules that complement each other:

Audio Temporal Enhancement Module uses a cascading con-
volutional block (ConvBlock) for time-frequency domain feature
learning [1], and each ConvBlock integrates two-dimensional con-
volution, batch normalization, ReLU activation, and maximum
pooling operations in turn to effectively extract acoustic represen-
tations with spatiotemporal invariance. The module further models
the temporal dynamic characteristics through the bidirectional GRU
network, and introduces the multi-head self-attention mechanism
[11] to capture the long-range context dependence.

Visual Feature Enhancement Module is designed with an in-
novative feature processing mechanism: cross-modal space align-
ment is achieved through linear projection, layer normalization
operation [15] stabilizes feature distribution, and a configurable
dropout mechanism is used to improve the generalization ability of
the model. The design enhances feature discrimination while main-
taining the visual semantic integrity.

Multimodal Fusion Module integrates the temporal-aware
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Table 1: Performance comparison on STARSS23 dev-test split.
Method F20°/1/on (%) DOAE (°) RDE (%) OSA (%)
Official Baseline 20.0 23.8 40.0 80.0
Replicated Baseline 18.8 25.7 39.0 79.9
AV-SELD (ours) 23.1 20.1 34.0 79.1

Transformer decoder architecture [18] to realize the deep interac-
tion of audio and video features through the cross-attention mecha-
nism. The structure dynamically models cross-modal spatiotempo-
ral associations to provide optimized feature representation for joint
sensing.

Multi-task prediction head adopts a parallel output design:
the DOA prediction branch constrains the three-dimensional spatial
orientation output through the Tanh activation function; The dis-
tance estimation branch uses ReLU to ensure the non-negative char-
acteristics of physical distance; The spatial positioning state branch
uses Sigmoid to output the probability distribution of the target on
and off the screen. Each branch uses a dedicated activation function
to ensure the physical rationality of the output value.

The architecture supports flexible expansion of mono and
multi-track scenarios, and its modular design shows significant gen-
eralization advantages and robust performance in complex acoustic
environments [26]. A overview of our system is shown in Figure. 1.

3. EXPERIMENTS

3.1. Dataset and Training Setup

We train our model on a real spatial audio and visual record-
ings. The STARSS23[] dataset contains multichannel recordings
of sound scenes in various rooms and environments, together with
temporal and spatial annotations of prominent events belonging to
a set of target classes. The original 360-degree video are spatially
and temporally aligned with the microphone array recordings.

3.2. Experimental Results

We rigorously reproduced the challenge baseline framework to en-
sure fair comparison. As shown in Table. 1, our evaluation on the of-
ficial STARSS23 development-test partition demonstrates the com-
parative performance between the proposed audio-visual system
and the replicated baseline under standardized challenge metrics.
Our results demonstrate overall superiority over the replicated base-
line across most metrics, with the exception of a marginal deficit in
onscreen accuracy (OSA).
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