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ABSTRACT

Audio Question Answering (AQA) presents a significant challenge,
demanding models capable of complex reasoning over extensive au-
dio sequences. In this research, we boost the performance of Audio
Flamingo 2 (AF2), a compact yet powerful audio-language model,
by employing parameter-efficient Low-Rank Adaptation (LoRA).
We apply targeted data augmentation strategies for multiple-choice
QA and fine-tune the model using the DCASE2025 Challenge Task
5 dataset. Our top-performing model, utilizing LoRA with a rank
of 8, achieves a remarkable 69.67% accuracy. This substantially
outperforms all established baselines, including the strong Gemini-
2.0-Flash (52.5%). These results highlight the effectiveness and
practical value of lightweight adaptation approach, especially when
operating under constrained computational resources.

Index Terms— Audio Question Answering, Audio-Language
Model, Audio Flamingo 2, LoRA

1. INTRODUCTION

Audio Question Answering (AQA) is an emerging task in multi-
modal artificial intelligence that aims to develop systems capable
of understanding complex audio content and responding accurately
to natural language questions. Unlike conventional audio classifi-
cation, AQA requires high-level semantic comprehension, tempo-
ral reasoning, and contextual understanding across long audio se-
quences. The DCASE2025 Challenge Task 5 [1, 2] provides a struc-
tured benchmark for AQA through three distinct domains: Bioa-
coustics QA, Temporal Soundscapes QA, and Complex QA, each
emphasizing different aspects of audio understanding.

Several approaches have been proposed to tackle the challenges
of AQA, including baseline models provided in the DCASE2025
Challenge such as Qwen2-Audio-7B [3], Audio Flamingo 2 [4], and
Gemini-2.0-Flash [5]. Among available foundation models, we se-
lected Audio Flamingo 2 (AF2) as our base architecture due to its
balanced trade-off between model size and performance. Unlike
much larger models, AF2 features a compact 3-billion-parameter
language model paired with a powerful CLAP audio encoder [6]
and a Flamingo-style cross-attention mechanism [7, 8]. This design
balances model capacity and efficiency, enabling strong reasoning
over the audio without requiring extensive computational resources.

To enhance AF2’s performance on the AQA task, we employed
Low-Rank Adaptation (LoRA) [9], a parameter-efficient fine-tuning
strategy. LoRA was chosen for several reasons: it allows effective
adaptation of large pre-trained models with minimal computational
cost, mitigates the risk of catastrophic forgetting by keeping the

Table 1: Performance comparison on evaluation set

Model Accuracy (%)
Baseline
Qwen2-Audio-7B 45.0
AudioFlamingo2 45.7
Gemini-2.0-Flash 52.5
Ours
AudioFlamingo2 + LoRA (rank 8) 69.67
AudioFlamingo2 + LoRA (rank 16) 68.91
AudioFlamingo2 + LoRA (rank 32) 68.26

original model weights intact, and enables flexible experimentation
under resource constraints.

Through systematic experimentation with different LoRA rank
configurations applied to the attention mechanisms across all ma-
jor components of AF2, our approach achieved remarkable per-
formance improvements. The best configuration with LoRA rank
8 attained 69.67% accuracy on the development set, representing
a substantial 24% improvement over the baseline AF2 model and
surpassing the strongest existing baseline, Gemini-2.0-Flash, by
over 17%. These results demonstrate both the effectiveness of our
parameter-efficient fine-tuning approach and the exceptional poten-
tial of AF2 as a foundation model for AQA tasks.

2. METHOD

We applied LoRA to the query, key, and value projection layers
across the three major components of AF2: the CLAP encoder, the
Audio Transformer, and the Language Model. This ensures that the
adaptation effectively influences the attention mechanisms critical
to audio-text reasoning. By adjusting attention weights without al-
tering the core model parameters, we achieved efficient adaptation
while preserving the strengths of the original architecture.

To explore the balance between fine-tuning efficiency and
model performance, we conducted experiments using three differ-
ent LoRA rank settings: 8, 16, and 32. The rank-8 configuration in-
troduced approximately 3.38 million trainable parameters, provid-
ing a highly parameter-efficient solution. Increasing the rank to 16
doubled the number of trainable parameters to 6.75 million, allow-
ing greater adaptation capacity while still maintaining a lightweight
footprint. The rank-32 configuration expanded the trainable set to
13.5 million parameters, offering the highest flexibility among the
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three while remaining significantly more efficient than full model
fine-tuning.

Because the AQA task is structured as multiple-choice question
answering, input formatting plays a crucial role in model perfor-
mance. A key component of our methodology involved data aug-
mentation techniques specifically tailored to this format. During
training, we randomly shuffled the order of answer choices and ad-
justed the corresponding labels accordingly, while ensuring that the
original content remained semantically intact. This strategy was de-
signed to prevent the model from developing positional bias and to
promote robustness to variations in choice ordering.

In addition, we applied a label randomization technique to fur-
ther improve the model’s generalization ability. Each training ex-
ample was randomly assigned one of six labeling formats: upper-
case letters with periods (A., B., C., D., E., F.), uppercase letters
in parentheses ((A), (B), (C), (D), (E), (F)), lowercase letters with
periods (a., b., c., d., e., f.), lowercase letters in parentheses ((a),
(b), (¢), (d), (e), (), numbers with periods (1., 2., 3., 4., 5., 6.), and
numbers in parentheses ((1), (2), (3), (4), (5), (6)). By exposing the
model to varied formats, we minimized its reliance on specific la-
bel conventions and improved its ability to handle diverse question
presentations. For evaluation, we standardized the format by con-
sistently using uppercase letters in parentheses ((A), (B), (C), (D),
(E), (F)) without shuffling the order of choices. This allowed for
fair and consistent performance measurement while leveraging the
format robustness gained during training.

3. EXPEIMENTS

We used only the development dataset provided by the challenge or-
ganizers for model training and evaluated our models on the official
evaluation dataset. To assess performance, we compared our results
against the baseline models released with the challenge. Among
them, Qwen2-Audio-7B and Audio Flamingo 2 each achieved ap-
proximately 45% accuracy, while Gemini-2.0-Flash recorded the
highest baseline performance at 52.5%. Our fine-tuned models
outperformed all baseline models by a notable margin. In partic-
ular, the configuration using LoRA with rank 8 achieved 69.67%
accuracy on the evaluation set—representing a 24% improvement
over the AF2 baseline and a 17% gain over the strongest baseline,
Gemini-2.0-Flash. These results highlight the effectiveness of our
parameter-efficient fine-tuning approach.

Interestingly, increasing the LoRA rank beyond 8 did not yield
additional performance improvements. The model with rank 16
achieved 68.91% accuracy, while rank 32 showed a slight decrease
to 68.26%. These results offer meaningful insights into the bal-
ance between adaptation capacity and performance in audio ques-
tion answering tasks. We speculate that this saturation effect stems
from the limited size of the training data relative to the number of
trainable parameters. While higher-rank LoRA configurations in-
herently offer greater expressive power and more capacity for adap-
tation, they may also introduce a higher risk of overfitting when the
training dataset is not sufficiently large or diverse to support such
extensive parameter tuning. This suggests that, under constrained
data conditions, lightweight adaptation methods like LoRA with a
carefully selected, lower rank can be a more robust and effective
approach than larger-scale tuning, which might simply memorize
noise or spurious correlations in the data.
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4. CONCLUSION

This work effectively demonstrates the significant potential of
parameter-efficient fine-tuning techniques for enhancing audio-
language models in audio question answering (AQA) task. Through
systematic application of LoRA to the Audio Flamingo 2 (AF2)
model, we achieved a substantial performance improvement, reach-
ing 69.67% accuracy—significantly outperforming all baseline
models. This shows AF2’s robust capability in handling diverse
audio question answering scenarios. Despite limited computational
resources and the inability to explore larger models or conduct ex-
tensive hyper-parameter tuning, our approach represented strong
practical value, showing that even lightweight adaptations can yield
state-of-the-art results. Notably, the observation that lower-rank
configurations outperformed higher ones suggests that constrained
parameterization can act as a form of regularization, promoting
generalization in data-limited settings. However, greater perfor-
mance gains may be achievable through heavier fine-tuning on
larger datasets, which we leave as future work.
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