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ABSTRACT

This technical report details our submission system for Task 3 of the
DCASE 2025 Challenge, which focuses on sound event localization
and detection (SELD) in regular video content with stereo audio. In
addition to estimating the direction of arrival (DOA) and distance
of sound sources, the audio-visual SELD task requires predicting
whether the sound source is on-screen. For the audio-only track,
we used two-channel log-Mel spectrogram features from stereo au-
dio as model inputs. We adapted the audio-visual pixel swapping
(AVPS) technique from first-order Ambisonics (FOA) to stereo for-
mat through left-right channel swapping coupled with horizontal
video pixel transposition, effectively doubling the training data. Our
architecture implemented three specialized models for DOA, dis-
tance, and source coordinates estimation tasks, subsequently inte-
grated through a joint prediction framework. The audio-visual track
utilized a ResNet-50 model pre-trained on ImageNet for visual fea-
ture extraction, enhanced by a teacher-student learning paradigm
for cross-modal knowledge distillation. To improve on-screen event
detection, we developed a novel two-stage visual post-processing
method. Our methods were evaluated using the development set of
the DCASE 2025 Task 3.

Index Terms— Sound event localization and detection, audio-
visual fusion, Conformer, visual post-processing

1. TRACK A: AUDIO-ONLY INFERENCE

Sound event localization and detection (SELD) refers to the abil-
ity of a machine to automatically recognize the temporal activity
trajectory of each sound category from a multi-channel audio in-
put and to track the spatial position of the active sound source. In
this technical report, we try to address the task with an additional
source distance estimation (SDE), formatting a 3D SELD frame-
work that jointly detects sound events, estimates their directions of
arrival (DOA), and predicts their distances [1]. To enhance model
generalization, we apply advanced audio data augmentation tech-
niques to generate diverse training samples. Our approach lever-
ages the ResNet-Conformer [2,3] architecture, a powerful deep neu-
ral network (DNN) optimized for 3D SELD. Prior studies, such
as [4] and [5], adopt multi-task learning with dual branches for
sound event detection (SED) and DOA estimation. We advance this
framework by exploring two integration strategies for distance esti-
mation [6]: (1) a unified DOA-SDE branch merging direction and

distance regression; and (2) a modular pipeline combining a stan-
dalone SDE model with DOA predictions. Finally, model ensemble
techniques are employed to robustly predict sound categories, di-
rections, and distances. This report details the methodology’s core
components: data augmentation, network training, and model en-
semble, providing a effective solution for 3D SELD.

1.1. Audio Data Augmentation

The official DCASE2025 Task3 Stereo SELD Dataset [7,8] contains
41 hours and 42 minutes of stereo audio recordings, each segmented
into 5-second clips. The dataset is partitioned into 16,214 training
clips and 13,786 testing clips. Given this distribution, data augmen-
tation becomes essential to improve sample diversity and prevent
model overfitting. In this challenge, we employ three augmentation
strategies to expand the training set.

First, we utilize stereo channel swap (SCS) spatial augmenta-
tion, an improved version of our prior method [5]. This technique
increases DOA representation by systematically swapping the left
and right audio channels, thereby simulating varied spatial configu-
rations. Second, we generate synthetic multi-channel data by con-
volving single-channel sound samples from the FSD50K dataset [9]
with spatial room impulse responses (SRIRs). This process lever-
ages a newly released simulation library [10], enabling us to ex-
pand the training dataset with 41.7 hours (30,000 clips) of acous-
tically diverse samples. This approach effectively simulates real-
istic acoustic environments while preserving label consistency for
SELD tasks. Third, we apply Mixup augmentation [11], which cre-
ates new training samples through linear interpolation of both input
features and their corresponding targets. This technique enhances
model generalization by encouraging smoother decision boundaries
and mitigating overfitting, particularly in scenarios with limited la-
beled data.

1.2. Network Training

In this challenge, we process stereo-format audio data sampled at
24 kHz to extract spatiotemporal features for 3D SELD. A 1024-
point short-term Fourier transform (STFT) is applied to each 40
ms Hanning window with a 20 ms hop length, converting the two-
channel audio into log Mel-spectrogram features. This yields a
time-frequency representation with a feature shape of 2 × 250 × 64
for each 5-second audio segment, ensuring consistent input dimen-
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Figure 1: The network architecture of our proposed audio 3D SELD
models.

sions for the network. The SCS strategy systematically swaps left
and right audio channels, doubling the training data size to about
130 hours. This enhances spatial diversity and robustness in DOA
representation.

We adopt ResNet-Conformer [3] as the backbone network,
combining the strengths of ResNet and Conformer. This hybrid de-
sign captures both local spectro-temporal patterns and long-range
dependencies in audio signals, critical for joint sound event de-
tection and localization. The network is optimized for 3D SELD,
jointly predicting sound event categories, DOAs, and source dis-
tances, leveraging multi-task learning frameworks. In this techni-
cal report, we adopt three models with different output formats to
handle 3D SELD task, as illustrated in Figure 1. Each model is
designed to handle specific aspects of sound event localization and
detection, with tailored output formats and loss functions.

Adopting the dual-branch framework proposed by [5], the first
SED-DOA model simultaneously performs sound event detection
and direction of arrival estimation. The SED branch classifies sound
events, while the DOA branch predicts azimuth and elevation an-
gles. To extend localization capabilities to 3D space, the second
model integrates source distance into DOA estimation framework.
The source coordinate estimation (SCE) branch predicts absolute
Cartesian coordinates. The labels of the SCE branch is obtained by
multiplying the normalized DOA vectors with the source distance.
The mean square error (MSE) loss is applied to the SCE branch,
ensuring precise regression of spatial coordinates. This model aims
to predict the absolute Cartesian coordinates of the sound source,
where the direction of the coordinate vector represents the DOA and
the length represents the source distance. This formulation unifies
DOA and distance estimation, enabling full 3D localization within
a single output branch. Focused on distance-aware applications, the
third model decouples distance estimation from directional analy-
sis. The source distance estimation (SDE) branch employs mean
square percent error (MSPE) [1] as the loss function for handling
the wide dynamic range of distance values. The SED branch re-
mains consistent with the other models, ensuring comparable event
detection performance.

1.3. Model Ensemble

To enhance generalization capability and boost overall perfor-
mance, we employ a model ensemble approach that combines the
outputs of three specialized models: SED-DOA, SED-SDE, and
SED-SCE. The SED-DOA model predicts sound event directions

in Cartesian coordinates of unit length. The SED-SDE model esti-
mates source distances, addressing a critical limitation of traditional
SELD frameworks that ignore distance information. The SED-SCE
model predicts absolute source positions in Cartesian coordinates,
enabling full 3D localization.

To get more robust SED results, we fuse the posterior probabil-
ities of these three models. The final results for direction and dis-
tance come from each respective model. Integrating multiple mod-
els improves the generalization and 3D SELD performance. The
final prediction is a combination of the SED-DOA, SED-SDE and
SED-SCE models.

2. TRACK B: AUDIO-VISUAL INFERENCE

2.1. Video Data Augmentation

The DCASE2025 Task3 Stereo SELD Dataset contains about 22.5
hours of audio-visual training data [7]. However, a critical limi-
tation arises from the fact that most sound sources are off-screen,
which poses a great challenge for audio-visual (AV) 3D SELD
methods due to difficulties in modal alignment. To improve the di-
versity of video data, we apply data augmentation techniques sim-
ilar to those used for audio data. In audio-only SELD, SCS ef-
fectively doubles the training data by swapping left and right audio
channels while preserving spatial cues. For the audio-visual dataset,
we extend the augmentation method by horizontally flipping video
pixels to simulate mirrored perspectives and simultaneously swap-
ping left/right audio channels to maintain spatial correspondence
between visual and audio modalities. This augmentation approach
yields approximately 45 hours of augmented audio-visual training
data.

2.2. Audio-Visual Network Training

The audio-visual Stereo SELD network takes both audio features
and visual features as inputs. Audio features are extracted identi-
cally to audio-only SELD systems. A pre-trained ResNet-50 [12]
backbone extracts frame-level features at 10 fps. Global average
pooling is applied to the last convolutional layer, yielding a 7×7
feature map per frame. For the fixed 5-second input segments, this
results in a 50 × 7 × 7 feature.

Audio-guided video attention was firstly introduced for audio-
visual event localization in [13]. Inspired by this work, we em-
ploy the multi-stage video attention network (MVANet) [14] for AV
SELD task. Audio embeddings from multiple network layers are
used to guide the attention module to focus on spatial information
of visual features related to sound events in MVANet, leveraging the
complementary characteristics between audio and video modalities.

Our proposed framework extends the SED-SCE model by in-
tegrating two key ideas to address the challenges of limited audio-
visual data and on-screen estimation. To explicitly model the spatial
correspondence between sound events and visual scenes, we aug-
ment the SED-SCE architecture with an on-screen (ONS) branch
to predict whether the sound event is within the screen. The net-
work structure is shown in Figure 2a. To mitigate data scarcity in
the audio-visual domain, we adopt a cross-modal teacher-student
learning (TSL) framework, inspired by Jiang [15]. The framework
transfers knowledge from a teacher model (trained on large-scale
audio-only data with augmentations like SCS and multi-chanel sim-
ulation) to a student audio-visual model (trained on limited multi-
modal data). The proposed TS-SED-SCE-ONS model is shown in
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Figure 2: The network architecture of our proposed audio-visual 3D
SELD model.

Figure 2b. The network structure of the teacher model is ResNet-
Conformer, while the network structure of the student model is
MVANet.

2.3. Model Ensemble and Post-processing

We train two kinds of audio-visual 3D SELD systems as described
in the previous subsection. The submission system is obtained by
fusing these two single systems with the model trained on the audio-
only track using posterior probability fusion.

Additionally, we adopt a two-stage visual post-processing strat-
egy. In the first stage of visual post-processing, we refine the ONS
and DOA predictions of sound sources using the keypoint detection
results to generate more accurate DOA and ONS results [15]. In
the second stage, we use Grounding DINO [16] to detect potential
sound sources in video frames. We design specific prompts for dif-
ferent sound source categories to get more accurate DOA and ONS
results for each category.

3. RESULTS ON DEVELOPMENT DATASET

3.1. Results on Track A

We conducted the evaluation of our proposed method using the
DCASE2025 Task3 Stereo SELD Dataset. To address data scarcity
in Track A, we expand the training set through the data augmenta-
tion techniques described earlier. The performance of our 3D SELD
systems is compared to the baseline method on the audio-track de-
velopment dataset, with the results summarized in Table 1. The
table presents three variants of our proposed model. In the Table 1,
“SED-DOA” denotes the modeling method based on the SED-DOA
output format, “SED-SDE” denotes the modeling method based on
the SED-SDE output format, and “SED-SCE” denotes the modeling
method based on the SED-SCE output format. “Model Ensemble”
represents using model ensemble for joint prediction of these three
models. Our proposed 3D SELD systems significantly outperform
the baseline system.

3.2. Results on Track B

For Track B, we conducted the experiments using approximately
45 hours of audio-visual training data, focusing on fine-tuning the

Table 1: Experimental results of the audio-only 3D SELD systems
on the development dataset using stereo format data.

System F20◦,1 DOAE RDE
Baseline-A 0.23 24.50◦ 0.41
SED-DOA 0.50 12.50◦ -
SED-SDE 0.53 - 0.26
SED-SCE 0.50 12.80◦ 0.27

Model Ensemble 0.54 11.80◦ 0.26

AV SELD models initialized with audio pre-trained parameters. Ta-
ble 2 presents the experimental results of the proposed AV SELD
methods on the development dataset. All systems in Table 2 adopt
the MVANet [14]. In the Table 2, “AV SED-SCE-ONS” repre-
sents a single audio-visual model, while “AV TS-SED-SCE-ONS”
is an improved audio-visual model trained via the TSL framework.
Both of these two models can simultaneously predict the class, az-
imuth angle, distance of the sound event, and whether it is within
the screen. “AV Model Ensemble” represents the fusion of several
AV SELD systems with a single audio system, leveraging comple-
mentary strengths across modalities. “+PP” indicates the use of a
two-stage post-processing method. Our proposed audio-visual sys-
tem demonstrates significant improvement over the baseline sys-
tem. The AV TS-SED-SCE-ONS model outperforms its non-TSL
counterpart in F-score and DOAE metrics. The ensemble system
achieves a 23% improvement in F1-score over the baseline, high-
lighting the benefits of audio-visual data augmentation and effec-
tive multi-model fusion. Post-processing (+PP) further improves
F1-score, DOAE, and OSA metrics, underscoring the effectiveness
of late-stage visual refinement.

Table 2: Experimental results of the audio-visual 3D SELD systems
on the development dataset using stereo format data.

System F20◦,1,on DOAE RDE OSA
Baseline-AV 0.20 23.80◦ 0.40 0.80

AV SED-SCE-ONS 0.38 12.60◦ 0.28 0.81
AV TS-SED-SCE-ONS 0.39 12.50◦ 0.29 0.80

AV Model Ensemble 0.43 11.70◦ 0.26 0.80
+ PP 0.47 11.80◦ 0.26 0.86
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