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ABSTRACT

This paper presents a unified framework for Unsupervised Anomaly
Sound Detection (UASD) that combines Convolutional Autoen-
coders (CAE) with Domain-Adversarial Neural Networks (DANN)
and Deep Support Vector Data Description (Deep SVDD). Our ap-
proach addresses the critical challenges of domain shift and first-
shot generalization in the DCASE 2025 Task 2 challenge. The pro-
posed architecture employs a CAE to learn compact latent repre-
sentations while a domain classifier with gradient reversal enforces
domain-invariant features. The latent space is simultaneously op-
timized using Deep SVDD to create a tight hypersphere around
normal samples. Unlike traditional reconstruction-based methods,
our approach leverages both reconstruction loss and a contrastive
SVDD loss that pushes generated pseudo-outliers from the normal
data boundary, combined with adversarial domain adaptation. Our
system demonstrates superior performance over the DCASE 2025
autoencoder baseline, with achieving a total score of 0.77 (versus
baseline 0.65). The domain-adversarial training significantly im-
proves target domain generalization, establishing the efficacy of
joint optimization for robust anomaly detection in dynamic acoustic
environments.

Index Terms— audio anomaly detection, domain-adversarial
training, convolutional autoencoder, deep SVDD, unsupervised
learning

1. INTRODUCTION

Predictive maintenance using acoustic signals is a cornerstone of
modern industrial monitoring and Industry 4.0 [1, 2]. Although
Unsupervised Anomaly Sound Detection (UASD) systems are de-
signed to be effective in real-world settings, their performance is
hampered by two persistent and intertwined challenges: the rarity
of fault data and the problem of domain shift.

First, anomalous sounds corresponding to machine faults are,
by nature, infrequent and diverse. This scarcity makes it impracti-
cal to collect a comprehensive dataset of all possible failure modes,
rendering traditional supervised classification methods ineffective.
Second, a model trained in a controlled source environment will
invariably encounter domain shift when deployed in a new target
environment. Variations in machine load, operating speed, compo-
nent mounting, and ambient noise create distributional shifts in the
acoustic data that can drastically degrade a model’s performance.
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The DCASE Task 2 challenge series reflects the research com-
munity’s progressive efforts to tackle these issues, evolving from
plain inlier modeling (2020) [3, 4], through domain adaptation
(2021) [5, 6, 7], to the current, more demanding machine general-
ization [8] and first-shot detection scenarios (2022-2025) [9, 8, 10].
Prevailing strategies in the field, including successful approaches
like [11, 12], generally follow three main lines of work. The foun-
dational approach relies on autoencoders (AEs) [13, 14]. To im-
prove upon this, Outlier Exposure (OE) [15] explicitly trains a
model to recognize anomalousness by using proxy outliers, often
sourced from large, external audio corpora. Finally, hybrid ensem-
bles [16, 17] have shown success by fusing the scores of multiple,
diverse subsystems.

However, each of these strategies carries inherent limitations.
Autoencoders are also sensitive to domain shift. Outlier Exposure,
conversely, is heavily dependent on the quality and relevance of the
chosen outlier dataset [18]. While ensembles are powerful, they in-
crease computational complexity and can be challenging to deploy
and maintain. A framework that can learn domain-invariant features
while simultaneously creating a compact, well-defined boundary for
normal data within a single model remains a key research gap.

This paper closes that gap by proposing a unified architecture
that combines a Convolutional Autoencoder (CAE) with Domain-
Adversarial Neural Networks (DANN) and the one-class objective
of Deep SVDD. We tackle the challenging machine generalization
task by training a single, robust model on a diverse set of machine
data.

Our main contributions are as follows:

1. We propose a unified framework for a single, machine-
generalized model that is jointly regularized by DANN for
domain invariance and Deep SVDD for creating a compact,
hyperspherical class boundary for normal data.

2. We demonstrate that our hybrid-objective CAE,leveraging
a stable and structured alternating training strategy, sub-
stantially outperforms both a machine-specific base-
line and the embedding-centric generalized architecture
(AudioMamba)[19].

3. We validate that the hybrid-objective CAE-DANN model
achieves superior generalization performance in the
machine-agnostic setting. With a TOTAL (Ω) score of 0.77,
it significantly outperforms both the embedding-centric
AudioMamba [20] model (0.61) and the machine-specific
DCASE 2025 autoencoder baseline (0.65).
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The rest of this paper is organized as follows: Section 2 details
the proposed method, Section 3 describes the experimental config-
uration, and Section 4 presents our main results and discussion. Fi-
nally, Section 5 concludes the paper and suggests future directions.

2. METHOD

Our method employs a unified architecture that combines three
complementary objectives: reconstruction-based representation
learning, pseudo Outlier Exposure(pOE), and domain-invariant fea-
ture learning. Given log-mel spectrogram X ∈RC×H×W (C=1),
we process it through a convolutional autoencoder that simultane-
ously optimizes for accurate reconstruction of normal samples and
compact latent representations.

2.1. Convolutional Autoencoder Architecture

The Convolutional autoencoder (CAE) is composed of a symmetric
encoder-decoder structure, mapping an input spectrogram X to a
latent representation z and then to a reconstructed spectrogram X̂ .

The encoder, denoted as a function Enc(·), consists of four con-
volutional blocks. Each block, indexed by l ∈ {1, 2, 3, 4}, applies
a 2D convolution (Convl), followed by batch normalization (BNl)
and a ReLU activation function. This sequence progressively down-
samples the spatial dimensions while increasing the channel depth
(1→ 16→ 32→ 64→ 128). The transformation can be expressed
as:

Hl = ReLU(BNl(Convl(Hl−1))) (1)

where H0 = X is the input spectrogram, and the final encoder
output is the feature map H4 = Enc(X).

The bottleneck operates on the flattened output of the final con-
volutional layer, hflat = Flatten(H4). A fully connected linear layer
then maps this high-dimensional feature map to the latent represen-
tation z ∈ Rd:

z = Wenchflat + benc (2)

where Wenc and benc are the weights and bias of the encoding linear
layer.

The decoder, denoted Dec(·), mirrors the encoder’s architec-
ture. It first projects the latent vector z back to the dimensionality
of the flattened feature map, which is then reshaped to its 2D spatial
form Ĥ4:

ĥflat = Wdecz + bdec and Ĥ4 = Reshape(ĥflat) (3)

The core of the decoder is a sequence of four transposed convolu-
tional blocks that progressively upsample the feature map and re-
duce its channel depth (128 → 64 → 32 → 16 → 1). The final
layer employs a ‘Sigmoid‘ activation function to produce the recon-
structed spectrogram X̂:

X̂ = Dec(Ĥ4) = Sigmoid(final_block(. . . )) (4)

Each transposed convolutional block comprises a 2D transposed
convolution, batch normalization, and a ReLU activation, ensuring
a symmetric reconstruction of the original input’s shape.

2.2. Deep SVDD Optimization in Latent Space

Following the Deep SVDD framework [21], our training objective
includes a loss term designed to map the latent representations z of
normal samples into a minimal-volume hypersphere, defined by a

center c ∈ Rd. The center c is initialized as the mean of embeddings
from normal training samples in an initial forward pass.

The Deep SVDD loss term consists of two parts. The first part
penalizes the distance of normal samples from the center, encour-
aging them to be compact. The second part, acting as a form of
in-domain outlier shaping, leverages the known abnormal samples
from the training data. It pushes their representations away from the
center c, beyond a specified margin ν. This enforces a structured
latent space where the boundary between normal and anomalous
classes is explicitly defined.

This is formally expressed as:

LSVDD =
1

|In|
∑
i∈In

∥zi − c∥2 + 1

|Ia|
∑
i∈Ia

max(0, ν − ∥zi − c∥2)

(5)
where In and Ia are the sets of normal and abnormal samples in
the batch, respectively. This joint objective trains the encoder to
not only learn the distribution of normal data but also to actively
separate it from the distributions of known fault conditions, leading
to a more discriminative latent space.

2.3. Domain-Adversarial Feature Learning

To improve the model’s generalization capability between the
source and target domains, we incorporate a domain adaptation
mechanism based on the Domain-Adversarial Neural Network
(DANN) framework.

The domain classifier, D, is a feed-forward network composed
of fully connected layers, batch normalization, ReLU activation,
and dropout. Crucially, a Gradient Reversal Layer (GRL) [22] is
placed between the encoder’s output and the domain classifier’s in-
put. The forward pass through the classifier, which takes the GRL-
modified latent vector as input, is given by:

D(z) = W2 · ReLU(BN(W1 · GRLλ(z) + b1)) + b2 (6)

The GRL is the key to adversarial training. In the forward pass,
it acts as an identity function. In the backward pass, it multiplies
the incoming gradient by a negative scalar, −λ. This behavior is
formally defined by its gradient with respect to the adversarial loss,
Ladv:

∂Ladv

∂z
= −λ ∂Ladv

∂GRL(z)
(7)

This gradient reversal creates a conflicting objective: the do-
main classifier D is trained to correctly predict the domain, while
the encoder is simultaneously trained to produce features that con-
fuse the classifier. This adversarial dynamic encourages the encoder
to learn features that are not only useful for the primary anomaly
detection task but are also indistinguishable between the source and
target domains, thus promoting robust generalization.

2.4. Joint Training and Inference

The training of our unified model follows the principles of Domain-
Adversarial Neural Networks, employing an alternating, two-step
update scheme within each training batch. This training procedure,
detailed in Algorithm 1, is essential for stabilizing the adversarial
dynamic between the feature encoder and the domain classifier.

In the first step, we update only the parameters of the domain
classifier, θD . The classifier is trained to minimize the standard
cross-entropy loss for domain prediction, LD . Crucially, this is
done using latent features, z, that are detached from the encoder’s
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Algorithm 1 Joint Training Procedure

Require: Dataset D, margin ν, weights αrecon, λ
1: Initialize CAE parameters θCAE, domain classifier θD
2: Initialize SVDD center c using normal sample embeddings

from D
3: for epoch = 1 to Nepochs do
4: for each batch (X, d, y) in D do
5: // — Step 1: Update Domain Classifier —
6: z, _← CAE(X; θCAE) ▷ Get latent embeddings
7: LD ← CrossEntropy(D(z.detach(); θD), d)
8: Update θD via gradient descent on LD

9: // — Step 2: Update Autoencoder —
10: z, X̂ ← CAE(X; θCAE) ▷ Forward pass with gradients
11: Lrecon ← ∥Xy − X̂y∥2 for samples where y = 0
12: LSVDD ← Eq. 5 using z and y
13: Ladv ← CrossEntropy(D(GRLλ(z)), d)
14: Ltotal ← αreconLrecon + LSVDD + Ladv

15: Update θCAE via gradient descent on Ltotal

16: end for
17: Evaluate on validation set and save best model based on

performance
18: end for
19: return Best performing model parameters θCAE and SVDD

center c

computation graph, ensuring that the gradients are only used to im-
prove the classifier and do not affect the encoder.

In the second step, the domain classifier’s parameters are
frozen, and the autoencoder’s parameters, θCAE , are updated. The
encoder is trained to minimize a hybrid objective function while
simultaneously trying to maximize the domain classifier’s loss via
the Gradient Reversal Layer. The complete objective function for
this step is a weighted sum of the reconstruction, Deep SVDD, and
adversarial losses:

Ltotal = αreconLrecon + LSVDD + Ladv (8)

Here, Lrecon is the mean squared error computed only for normal
samples, LSVDD is the one-class hypersphere loss from Eq. 5, and
Ladv is the adversarial domain classification loss regularized by the
GRL’s hyperparameter λ. The weights αrecon and λ control the
trade-off between reconstruction fidelity and the two regularization
terms.

An important aspect of our methodology is the distinction be-
tween the objectives for training and the metric for inference. While
the Deep SVDD and DANN losses are crucial regularizers, our em-
pirical validation showed that the mean squared reconstruction er-
ror provided a more stable and effective anomaly score for the final
evaluation. Therefore, at inference time, the anomaly score for a
test sample X is computed as:

score(X) =
1

C ·H ·W ∥X − X̂∥2 (9)

3. EXPERIMENTAL SETUP

3.1. Data

Our experiments utilize the DCASE 2022-2025 Task 2 corpus
[4, 3]. The training dataset for our single, machine-generalized

model was constructed by creating a comprehensive pool of normal
operational data. This pool includes:

1. Core Normal Data: All normal audio clips from the seven
primary machine types (ToyCar, Fan, etc.), combining sam-
ples from both source and target domains across the official
‘train‘ directories.

2. Additional Training Data: All clips from the provided "ad-
ditional_training_data" set, which contains further examples
of source-domain operational sounds.

From this large pool of normal data, we generated our training
anomalies using Synthetic Anomaly Augmentation. To do this, we
followed the principles of pseudo Outlier Exposure [15] by taking a
subset of the normal clips from both source and target domains and
applying corrupting transformations, such as random noise bursts
and frequency shifts. These augmented clips were then labeled as
"anomaly" and constitute the entire set of anomalies used during
training.

The final training dataset, consisting of the original normal data
pool and the synthetic anomalies, then undergoes stratified over-
sampling. This final step balances the classes (normal, synthetic
anomaly) and domains (source, target), ensuring each category is
equally represented to prevent model bias. Model performance was
evaluated using the official DCASE 2025 Task 2 test sets.

3.2. Implementation Details

Our framework was implemented in PyTorch and trained on
NVIDIA T4 and RTX 3090 GPUs. The specific hyperparameters
for the proposed CAE-DANN model are as follows:

• Architecture: The latent dimension was set to d = 128. The
domain classifier used a hidden layer of 64 units with a dropout
rate of 50%.

• Optimizer: We used the AdamW optimizer for both the main
model and the domain classifier, with a learning rate of 1 ×
10−4 and weight decay of 1× 10−5.

• Loss Weights: The hyperparameters for the joint loss function
(Eq. 8) were set to αrecon = 0.5 for the reconstruction weight,
ν = 3.0 for the Deep SVDD margin, and λ = 0.1 for the GRL
adversarial weight.

• Training: Models were trained for 20 epochs with a batch size
of 256. We employed a learning rate scheduler that reduced
the learning rate by a factor of 0.5 if the validation AUC did
not improve for 5 consecutive epochs.

4. RESULTS AND DISCUSSION

This section presents a comprehensive performance analysis of our
proposed systems against the official baseline. We evaluate three
distinct models:

1. Our primary Proposed (CAE-DANN) system, which uses a
convolutional autoencoder with a hybrid training objective to
learn a single, generalized model.

2. An embedding-based AudioMamba (AuM) system. This
was also trained as a single, machine-generalized model in-
corporating GRL and an SVDD Outlier Exposure (OE) strat-
egy.

3. The official DCASE 2025 Autoencoder (AE) baseline.
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Table 1: Performance comparison of the proposed machine-generalized CAE-DANN system, a machine generalized AudioMamba (AuM)
system, and DCASE 2025 AE baseline.

Proposed (CAE-DANN) AudioMamba (AuM) Baseline (AE)

Machine AUC-S AUC-T pAUC AUC-S AUC-T pAUC AUC-S AUC-T pAUC

ToyCar 0.781 0.670 0.654 0.820 0.810 0.630 0.790 0.725 0.741
ToyTrain 0.891 0.910 0.836 0.870 0.870 0.740 0.673 0.598 0.602
Fan 0.653 0.694 0.675 0.580 0.500 0.510 0.644 0.338 0.503
Gearbox 0.844 0.883 0.508 0.610 0.490 0.490 0.702 0.653 0.664
Bearing 0.950 0.934 0.858 0.710 0.570 0.540 0.711 0.600 0.643
Slider 0.906 0.937 0.703 0.500 0.680 0.530 0.703 0.575 0.621
Valve 0.868 0.851 0.614 0.570 0.510 0.500 0.650 0.611 0.593

hmean 0.836 0.821 0.688 0.643 0.603 0.552 0.681 0.614 0.628
amean 0.842 0.840 0.693 0.666 0.633 0.563 0.702 0.631 0.646
TOTAL (Ω) 0.778 0.610 0.650

A comprehensive analysis of performance is presented in Ta-
ble 1.

4.1. Analysis of Generalized Models

A key outcome of our comparative analysis is the superior perfor-
mance of our Proposed (CAE-DANN) architecture in the machine-
generalized setting. With a TOTAL (Ω) score of 0.778, it not only
surpasses the more AudioMamba architecture (0.610) but also sig-
nificantly outperforms the Autoencoder baseline (0.650). This indi-
cates that the CAE-DANN, when trained on a diverse dataset from
all machines, successfully learns robust, generalizable features that
allow it to effectively detect anomalies across different machine
types. Its strong and consistent scores across nearly all machines
validate the power of its hybrid training objective for generaliza-
tion.

In contrast, the AudioMamba (AuM) system exhibits struggles
in this generalized setting. Despite being a modern architecture
combined with established GRL and OE techniques, its overall per-
formance is the lowest of the three. Its inconsistency performing
well on ‘ToyTrain‘ but poorly on ‘Fan‘, ‘Gearbox‘, and ‘Slider‘
suggests that its learned embedding space does not generalize as
effectively across the high variance of the different machine acous-
tics.

The key takeaway is that for this task, the training strategy
and scoring method are more critical than the raw complexity of
the model backbone. The success of the CAE-DANN architecture
demonstrates that a carefully designed hybrid loss is highly effec-
tive at producing a single, robust model for multiple machine types.

4.2. Discussion on Scoring Method

The decision to use reconstruction error for inference, despite the
heavy use of a latent-space SVDD loss during training, is a criti-
cal element of our system’s success. We suggest two reasons for
this. First, the reconstruction score is a global property of the entire
model and can be more robust than a distance metric tied to a sin-
gle center point ‘c‘. Second, and more importantly, the SVDD and
DANN losses act as powerful regularizers that force the autoen-
coder to learn an exceptionally precise manifold of normal data.
Consequently, the model’s reconstruction fidelity becomes an even
stronger and more discriminative signal of normalcy, which proves
highly effective in a generalized setting.

4.3. Complexity Analysis

The inference-time complexity of our proposed CAE-DANN sys-
tem is highly efficient. Since the domain classifier and SVDD loss
are only used during training, inference requires only a single for-
ward pass through the lightweight CAE. With 17.04 M parameters,
the model requires approximately 0.61 GMACsfor a standard 10-
second input (a 128× 1024 spectrogram). This computational effi-
ciency makes the model well-suited for deployment on edge devices
and embedded GPUs for real-time monitoring applications.

5. CONCLUSION AND FUTURE WORK

In this work, we introduced a unified framework combining a Con-
volutional Autoencoder (CAE) with Domain-Adversarial Neural
Networks (DANN) and a Deep SVDD training objective. Our key
finding is that this approach, when trained as a single machine-
generalized model, achieves state-of-the-art performance, outper-
forming not only the Auto Encoder baseline but also more com-
plex embedding centric architectures. This success highlights that a
carefully designed hybrid training objective which jointly optimizes
for reconstruction fidelity, latent space structure, and domain invari-
ance can be more critical for generalization than the raw complex-
ity of the model backbone. Furthermore, we validated that using
reconstruction error as the final inference score is a robust and ef-
fective strategy, particularly when the model has been regularized
with powerful latent-space objectives during training.

Building directly on our findings, several avenues for future re-
search appear promising. The most immediate direction is the fu-
sion of the two available anomaly scores. Since our model computes
both the reconstruction error and the latent-space SVDD distance,
combining these, for instance through a normalized weighted aver-
age, could yield a more robust detector by capturing different facets
of anomalousness. Additionally, while our CAE captures spatial
patterns in the spectrogram, explicitly modeling temporal depen-
dencies with lightweight attention or recurrent mechanisms could
further enhance performance on anomalies that manifest as evolv-
ing patterns.
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