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ABSTRACT

This report outlines our approach to first-shot unsupervised
anomalous detection for machine condition monitoring,
developed for DCASE 2025 Task 2. Given the constraint of only
having normal operational data and the availability of clean
target device sounds or background noise, our method focuses on
leveraging audio separation and a self-supervised AutoEncoder
(AE) for anomaly detection.

Key components of our approach include training an audio
separation module to extract target sounds for effective denoising
and data augmentation, encoding audio features via an
AutoEncoder trained solely on normal data, and performing
conditional modeling with attribute and domain labels to enhance
generalization to unknown domains and complex acoustic
environments. Anomalies are detected using a K-Nearest
Neighbors (KNN)-based method by measuring the distance
between each test sample and its nearest neighbors in the training
set; greater distances imply higher anomaly likelihood.

Our approach achieved notable performance on the
development set,demonstrating is effectiveness. The AUC for
the target domain was 64.1% and for the source domain was
60.8%. Addtitionally, the Partial AUC values (p=0.1) for the
target and source domain was 55.6 % . These results underscore
the robustness and applicability of our methodology in detecting
anomalous sounds in various operational contexts.

Index Terms—first-shot, anomalous sound detection,
machine condition monitoring, conditional Autoencoder,
reconstruction loss, log-mel spectrogram

1. INTRODUCTION

Anomalous Sound Detection (ASD) serves as a critical task
in machine condition monitoring, aiming to distinguish normal
from abnormal machine sounds without prior knowledge of
anomaly patterns. The DCASE 2025 Challenge Task 2 series
focuses on identifying anomalous sounds across diverse machine
types, emphasizing complexities in real-world industrial
environments and challenges of domain shift[1]. This year’s
iteration highlights a "first-hot" problem under both attribute-
available and attribute-unavailable conditions. In practice, the
heterogeneity of machine types poses greater challenges for
utilizing sounds collected with trainable attribute labels.
Consequently, the current task features:

1. Anupdated and expanded set of machine types for evaluation.
2. Provision of pure noise or pure machine sound data for
specific machine types.

3. Absence of attribute labels for training certain machine types.

Based on the current task configuration, we observe that the
provided isolated operational sounds and background noise
samples offer advantageous conditions for constructing audio
separation modules[2,3]. This enables effective denoising and
signal enhancement of the original mixed recordings. To leverage
this opportunity, we introduce a Conv-TasNet-based audio
separation module, which employs a convolutional time-domain
architecture designed to effectively capture local temporal
structures and perform fine-grained separation of overlapping
sound sources. Through processing raw audio with this denoising
framework, Conv-TasNet significantly improves the signal-to-
noise ratio (SNR) and enhances signal fidelity, facilitating
morerobust downstream feature modeling and anomaly detection.

Following denoising, we employ a self-supervised
AutoEncoder (AE) trained exclusively on normal operating data
to learn compact latent representations of the purified audio. The
AE is designed to reconstruct normal signals with minimal error,
enabling it to implicitly model the distribution of normal acoustic
patterns. Deviations from this distribution—quantified by
reconstruction error or latent-space distance—serve as indicators
of potential anomalies. These learned representations provide
essential support for anomaly discrimination and offer a degree
of domain invariance by abstracting machine-specific acoustic
features.

The synergistic integration of audio separation and latent
representation learning enables our system to accurately
characterize machine state distributions in acoustically complex
industrial ~ environments.  Consequently, this  approach
substantially enhances anomaly detection performance,
particularly when encountering unseen machine types and
operating under weakly-labeled or low-resource conditions.

2. METHODOLOGY

2.1 Audio Separation Strategy with Conv-TasNet

Given the task configuration of DCASE 2025 Task 2, where
isolated operational machine sounds and background noise
samples are provided, we identify a unique opportunity to build a
high-performance audio separation module tailored for machine
condition monitoring. These clean references enable the learning
of explicit mappings between mixture signals and target
components, thereby facilitating supervised denoising and signal
decomposition.

To fully exploit this setting, we adopt Conv-TasNet[4], a
time-domain audio separation network known for its
effectiveness in modeling local temporal structures with high-
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resolution detail. Conv-TasNet uses a learnable encoder-decoder
framework with 1D convolutional filters and a temporal
convolutional network (TCN) as the separation core. Unlike
traditional spectrogram-based models, this architecture operates
directly on raw waveforms, enabling precise recovery of fine-
grained machine sound components while suppressing irrelevant
background noise.

Let XmixeR V denote the observed mixture signal. The Conv-
TastNet model decomposes it into estimated source X =X mach +X
nise , where each stream is optimized using scale- invariant
source-to-noise ratio (SI-SNR) loss[5] against the clean
references. This formulation allows the model to act as a
preprocessing denoising stage, producing enhanced audio Xmach
for downstream anomaly detection.

Learnable Econder:The input mixture waveform
XmixeR 18 first transformed into a latent representation using a
1D convolutional encoder:

X = Encoder(Xmx) € R "

This encoder acts as a learnable filterbank that extracts local
temporal structures while preserving the non-stationary and high-
frequency characteristics of the original signal, outperforming
traditional STFT-based methods[6].

Separation Module:The encoded features X are then
passed through stacked Temporal Convolutional Networks
(TCNis) to estimate source-specific masks:

M = Spearator(X) € R>"

where S is the number of sources (typically 2: machine sound and
noise). The masks M indicate the activation patterns of each
source in the latent space. The TCNs[7], with causal
convolutions and residual connections, enable efficient long-
range temporal modeling tailored to continuous and non-
stationary industrial acoustic signals.

Decoder:Each masked latent representation is transformed
back to the waveform domain wusing a 1D transposed
convolutional decoder:

X® = Dcoder(M(s) 0X),s=12

The reconstructed waveform ¢ (1) is treated as the denoised

machine sound and used as input for subsequent feature
extraction.

To train this module, we leverage the provided isolated
source data with a supervised loss based on Scale-Invariant
Signal-to-Noise Ratio (SI-SNR):

Lsep=—SI-SNRKnach Xonsct) —SI-SNR Krois Xoois)

With this learning strategy, the model not only extracts the
target machine sounds effectively but also suppresses complex
environmental noise and non-structured background information,
significantly improving the overall signal-to-noise ratio (SNR)[8].
Furthermore, due to Conv-TasNet’s strong capability in

modeling local temporal patterns and short-range dependencies,
the separated signals retain critical semantic features of the
machine operation. This results in cleaner and more robust inputs
for feature encoders (e.g., autoencoders), substantially enhancing
anomaly detection performance, particularly under unseen
machine types and domain-shifted conditions.

2.2 Conditional Autoencoder

Autoencoder (AE) detects anomalous sounds based on
reconstruction loss[9] . Specifically, the encoder component
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maps the input feature vector to a low-dimensional latent
representation, and the decoder component attempts to
reconstruct the original input signal from this latent
representation. The reconstruction loss is defined as the
difference between the original input feature vector and the
output vector produced by the AE . For samples not present in
the training set (i.e., anomaly samples), the reconstruction loss of
the AE will increase significantly, allowing them to be identified
as abnormal.

In terms of data processing, we convert the STFT into log-
Mel spectrogram for better feature representation[10]. To
convert the filtered STFT to a log-Mel spectrogram, we apply a
Mel filter bank M (/) and take thelogarithm:

F-1 ) \
SMel(m,t): log(fZJ X(t,f) | : M(maf)

Where:
> Smel(m,) 1S the log-Mel spectrogram.
> M (m, f) 18 the Mel filter for the m-th Mel frequency bin.

To enhance anomaly detection performance in specific
contexts, we adopt a Conditional Autoencoder (cAE) framework.
Machine-related information (e.g., machine ID or type) is
encoded into a condition vector ¢, which is concatenated with
the log-Mel spectrogram Swme and fed into the autoencoder to
guide reconstruction[11]. This allows the model to better adapt
to different machine conditions. Formally, the reconstruction is
defined as:

S = fir(Suel,¢)

Where far denotes the reconstruction function of the
conditional autoencoder. The reconstruction loss is calculated as
the mean squared error (MSE) between the input and its
reconstruction:

Lrecon:“ SMel— S ”2

During training, we compute the reconstruction errors for
all samples in the source domain and store them as a reference
distribution[12]. In the testing phase, we similarly reconstruct
the input and compute its reconstruction error vector
ews=|Sue—8) . To determine the anomaly score, we employ a K-
Nearest Neighbors (KNN) based approach[13]. Specifically, we
compute the average Euclidean distance between the test sample

and its K nearest neighbors from the training set in the error
space:

e

DKNNZE;“ Crest — €; ”2

trai .
Where eiam denotes the reconstruction error vectors of the K

nearest training samples. To improve robustness across domains,
we compute this score separately for the source and target
domains, and take the minimum of the two as the final anomaly
score:

: source target
Dfmal = mln{DKNN ’ DKNgN }

To further alleviate discrepancies in score distributions
between machines, we apply domain-wise score normalization:

_ Dﬁnal _llé

anomaly o
d
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Where x4and o, are the mean and standard deviation of KNN

scores within the respective domain d (source or target).

This method combines conditional modeling, local error
structure via KNN, and cross-domain normalization to achieve
robust anomaly detection with improved generalization across
unseen machine conditions.

Table 1: DCASE 2025 Task 2 experimental results on
development dataset (%). The value in the row “Total Score”
represents the harmonic mean of the AUC and pAUC scores
over all the machine types and domains.

Baseline Baseline Our
(MSE) (MAHALA) _ system
AUC(source)  71.05% 73.17% 96.6%
ToyCar AUC(target) 53.52% 50.91% 78.2%
pAUC 49.7% 49.05% 59.8%
AUC(source) 61.76% 50.87% 58.0%
ToyTrain  AUC(target) 56.46% 46.15% 64.4%
pAUC 50.19% 48.32% 51.1%
AUC(source)  66.53% 63.63% 54.4%
bearing AUC(target) 53.15% 59.03% 48.9%
pAUC 61.12% 61.86% 50.6%
AUC(source)  70.96% 77.99% 52.2%
fan AUC(target) 38.75% 38.56% 60.0%
. pAUC 49.46% 50.82% 50.2%
AUC(source) 64.8% 73.26% 80.3%
gearbox AUC(target) 50.49% 51.61% 73.9%
pAUC 52.49% 55.07% 62.6%
AUC(source) 70.1% 73.79% 78.1%
slider AUC(target) 48.77% 50.27% 59.5%
pAUC 52.32% 53.61% 56.2%
AUC(source)  63.53% 56.22% 74.8%
valve AUC(target) 67.18% 61.0% 81.9%
pAUC 57.35% 52.53% 55.7%
AUC(source) 66.77% 65.51% 67.5%
All AUC(target) 51.39% 50.05% 64.8%
pAUC 52.94% 52.72% 54.8%

Our method begins with a separation network that performs
denoising and disentanglement on raw audio signals. This pre-
processing step aims to suppress background noise and isolate
machine-related sound components, thereby improving the
quality of features used for anomaly detection. The separated
machine sounds are then treated as augmented data and used as
inputs to a convolutional autoencoder (AE).

We utilize 128-dimensional log-Mel spectrogram features
extracted from the audio as the input to the AE. The
convolutional AE is designed to learn robust representations and
reconstruct clean signals conditioned on machine attributes. The
training is conducted with a batch size of 256, using the Adam
optimizer with a learning rate of 0.001.

In scenarios where machine labels are missing or
unavailable, we adopt attribute classification or clustering-based
strategies to generate pseudo-labels for training the conditional
AE. The rest of the training and scoring procedures follow the
KNN-based anomaly detection approach described previously.
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3. RESULT

Table 1 presents the results of our system. Compared to the
baseline. As a key enhancement, we first apply an audio
separation strategy using Conv-TasNet to isolate machine-
relevant sounds from background noise. The separated machine
sounds are treated as augmented data and used as input to the
downstream anomaly detection models. This data augmentation
improves the robustness and generalization of the system,
especially under challenging acoustic environments.

Compared to the baseline, our improved Conditional AE[14],
along with the score normalization scheme for KNN-based on
anomaly scores across source and target domains, showed of
slightly lower performance in the source domain but significantly

better performance in the target domain. Overall, our Conditional
AE-based anomaly sound detection model demonstrated notable
improvements over the baseline, enhancing the detection
performance.
We submitted four systems for Task 2 of the DCASE 2025
Challenge, all of which have the same processing pipeline
except:
1. The conditional Autoencoder that uses conditional inputs for
improved anomaly detection
2. The Autoencoder without conditional inputs.
3. A system with 256-sized log-Mel features for higher

resolution analysis.

4. A Fully Connected Network mimicking the baseline structure
with fully connected layers instead of convolutional layers.

4. CONCLUSION

In this technical report, we present our submission for Task
2 of the DCASE 2025 Challenge. Our proposed system is based
on a Conditional Convolutional Autoencoder (AE) architecture,
enhanced by a prior audio separation stage. Specifically, we
introduce a Conv-TasNet-based separation module that processes
the original machine sound recordings to isolate machine-
relevant components and suppress background noise. The
separated machine sounds are then used as augmented training
data, effectively improving the quality and diversity of input
features for the downstream AE.

To extract meaningful representations from the audio, we
compute 128-dimensional log-Mel spectrograms from the
separated signals. These are used as inputs to the convolutional
AE, which is trained to reconstruct clean representations
conditioned on machine attributes. This approach allows the
model to better capture machine-specific behaviors and improve
anomaly detection under varying operational conditions.

When attribute or domain labels are available, they are
directly encoded and fed into the conditional AE. In cases where
such metadata is missing, we apply classifier-based inference or
clustering algorithms to estimate pseudo-labels for model training.
During inference, we adopt a K-Nearest Neighbor (KNN)
strategy in the reconstruction error space to compute anomaly
scores, and apply domain-wise score normalization to reduce
distribution bias across different machine types.

Our experimental results on the development set
demonstrate that the integration of audio separation and
conditional reconstruction significantly improves anomaly
detection performance compared to baseline methods.
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