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ABSTRACT

In this report, we present our anomalous sound detection (ASD)
systems developed for DCASE 2025 Challenge Task 2. We pro-
pose a cascaded approach that integrates a target signal enhance-
ment (TSE) model with a discriminative ASD system. First, we
train the TSE model utilizing supplementary clean machine sounds
and noise data. Then, we train the discriminative ASD system
using the enhanced machine sounds to improve noise robustness.
To further improve detection performance, we incorporate recently
proposed techniques into the discriminative ASD system: multi-
resolution spectrograms, pre-trained self-supervised learning fea-
tures, and pseudo-label generation. Our final ensemble system has
achieved 64.91% in the official scores calculated as a harmonic
mean of the area under the curve (AUC) and partial AUC (p = 0.1)
over all machine types and domains in the development set.

Index Terms— anomalous sound detection, target signal en-
hancement, pseudo labels

1. INTRODUCTION

This report describes the systems we submitted for the DCASE
2025 Challenge Task 2 [1]. The task focuses on anomalous sound
detection (ASD), which aims to detect mechanical failures from ma-
chine sounds. For system development, four requirements are im-
posed: (1) training models using only normal sounds, (2) addressing
domain shifts, (3) training models for entirely new machine types,
and (4) training models with or without attribute information. These
requirements are identical to those of last year [2]. As a difference
from last year, a supplementary dataset is newly provided, which
includes clean machine sounds or noise data for each machine type.
Participants can leverage this supplementary data to improve their
system performance.

Our solution utilizes the supplementary data to construct a tar-
get signal enhancement (TSE) model (Fig. 1). The TSE model
reduces noise in the machine sounds as a pre-processing, thereby
improving the performance in the downstream ASD models. The
downstream ASD models are based on the state-of-the-art dis-
criminative methods [3], [4]. These methods train a feature ex-
tractor via classification of meta-information labels, and detect
anomalies based on deviations from the normal training samples
in the discriminative feature space. We employ both spectrum-
based [3] and self-supervised learning (SSL) feature-based archi-
tectures [4] for the discriminative feature extractor, and ensemble
their anomaly scores. Additionally, we adopt pseudo-label genera-
tion techniques [3] to effectively train the feature extractor for ma-
chine types lacking attribute information.
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Figure 1: Overview of the proposed system

We conduct an experimental evaluation of our systems using
the test data of the DCASE 2025 Challenge Task 2 development
dataset [5], [6]. The results show that our systems significantly
outperform the official baseline system and achieve the best per-
formance when incorporating TSE pre-processing and pseudo-label
generation techniques. Specifically, our system achieved 64.91% in
the official scores, whereas the official baseline system [7] achieved
56.26%.

2. PROPOSED METHOD

Secs.2.1 and 2.2 describe the architectures of the proposed target
signal enhancement (TSE) and anomalous sound detection (ASD)
models, respectively. Sec.2.3 describes strategies for utilizing the
TSE models in ASD tasks.

2.1. TSE Model

We construct a TSE model by utilizing the supplementary data. As
shown in Fig. 2, we separately train the TSE model for each ma-
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Figure 2: Training of the TSE model. The TSE model is trained
separately for each machine type.

chine type using the following loss, LTSE:

LTSE = λLRecon + LClass, (1)

where λ is a hyperparameter that balances the two loss terms. The
reconstruction loss LRecon is defined as follows:

LRecon = LD(xTarget, fTSE(xTarget + n)), (2)

where LD(·, ·) is an arbitrary reconstruction loss function, fTSE(·)
is the TSE model, xTarget is the target signal—either clean ma-
chine sounds or noise—provided in the supplementary data, and n
is a sample drawn from AudioSet [8]. When xTarget is noise, the
TSE model is trained to extract the noise component from the noisy
machine sounds. Accordingly, the enhanced machine sounds are
obtained by subtracting the estimated noise from the original noisy
input.

LClass is defined as LClean
Class when clean machine sounds are

available, and as LNoise
Class when noise signals are available:

LClean
Class = LC(fClass(fTSE(xNoisyTM)), lMeta)

+ LC(fClass(xCleanTM), lMeta)

+ LC(fClass(xNoisyOM), lNoisyOM),

LNoise
Class = LC(fClass(fTSE(xNoisyTM)), lNoiseTM)

+ LC(fClass(xNoisyTM − fTSE(xNoisyTM)), lMeta)

+ LC(fClass(xNoiseTM)), lNoiseTM)

+ LC(fClass(xNoisyOM)), lNoisyOM),

where LC(·, ·) is an arbitrary classification loss function, and
fClass(·) is a classifier. xNoisyTM, xCleanTM, and xNoiseTM are
the noisy machine sounds, clean machine sounds, and noise sig-
nals of the target machine type, respectively. xNoisyOM is the noisy
machine sounds of the other machine types. lMeta is the meta-
information label of machine type and attribute, while lNoisyOM and
lNoiseTM are special labels assigned to each class. We use a frozen
pre-trained BEATs model with a trainable linear classification head
for fClass(·) to encourage the TSE model to learn the denoising ef-
fect rather than relying on the classifier.

2.2. ASD Model

Our discriminative ASD model consists of a frontend and a back-
end. The frontend extracts features from the input machine sounds,
while the backend computes anomaly scores based on the extracted
features.

2.2.1. Frontend

We employ four different architectures for the frontend: Spec,
BEATs, EAT, and SSLAM. Spec refers to an architecture that incor-
porates an amplitude spectrum and multi-resolution spectrograms
as input features [3]. Spec independently transforms each input fea-
ture into a DSpec-dimensional feature via neural networks. Subse-
quently, the DSpec-dimensional features are concatenated to form
a MDSpec-dimensional feature, where M is the number of input
features. Spec is trained from scratch using classification of meta-
information labels. This architecture enables capturing anoma-
lies from different perspectives, thereby improving ASD perfor-
mance [3].

Based on the successful application of SSL models to the ASD
task [4], [9], we also employ three SSL models: BEATs, EAT, and
SSLAM. BEATs iteratively trains an acoustic tokenizer and an au-
dio SSL model [10]. The SSL model is trained via a masked pre-
diction task on discrete tokens generated by the tokenizer. The to-
kenizer is randomly initialized in the first iteration and then itera-
tively updated via knowledge distillation from the SSL model ob-
tained in the previous iteration.

EAT is a SSL model based on the masked latent bootstrap-
ping framework, in which a student model is trained via masked
language modeling using the latent representations generated by a
teacher model, and the teacher is continuously updated by the stu-
dent [11]. To capture both global and local information, EAT com-
bines utterance-level and frame-level reconstruction losses [11].

SSLAM refines the masked latent bootstrapping framework to
enhance its ability to handle polyphonic sounds [12]. SSLAM trains
a student model on mixtures so that it preserves the characteristics
of the teacher model’s representations for each individual source
composing the mixture.

Following previous work [4], we fine-tune SSL models through
a meta-information label classification task using low-rank adap-
tation (LoRA) [13]. From BEATs, we obtain a 768-dimensional
feature sequence. We aggregate this feature sequence into a single
representation using a statistics pooling layer [14], and project it
to a DSSL-dimensional feature using a linear layer. The resulting
DSSL-dimensional feature is used for both the classification task
and the subsequent backend. For EAT and SSLAM, we obtain a
768-dimensional CLS feature, and project it to a DSSL-dimensional
feature using a linear layer.

Additionally, since the meta-label classification task may de-
grade performance for certain machine types [3], we also employ
frozen pre-trained SSL models as frontends to improve robust-
ness [15]. For BEATs, we average the output sequence to obtain
a 768-dimensional feature, while for EAT and SSLAM, we directly
use the 768-dimensional CLS feature.

2.2.2. Backend

We employ the same backend as in previous works [16]. The back-
end computes an anomaly score as the minimum cosine distance
between an observation and the training data in the feature space.
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To address the data imbalance between the source and target do-
mains, SMOTE oversampling [17] is applied to the target-domain
training data in advance.

2.2.3. Pseudo-label Generation

We employ pseudo-label generation techniques to effectively train
the frontend for machine types without attribute information [3].
Unlike previous work [3], we utilize BEATs as the feature extrac-
tor for pseudo-label generation. First, we obtain a time-averaged
768-dimensional feature from the BEATs model, and then apply
principal component analysis to reduce its dimensionality to 50. Fi-
nally, we perform Gaussian mixture model-based clustering to gen-
erate pseudo labels, where the number of clusters is determined by
the Bayesian information criterion (BIC), with a maximum of eight
clusters.

2.3. Strategies to utilize TSE for ASD

We utilize TSE during the training and inference stages of the ASD
models, as well as for pseudo-label generation. At each stage, we
leverage both noisy and enhanced machine sounds, taking into ac-
count the trade-off between noise robustness and the loss of ma-
chine sound components caused by TSE processing.

At the training and inference stages of the ASD models, we
consider three strategies: (1) a baseline approach that uses the orig-
inal noisy machine sounds for both training and inference; (2) an
approach that uses enhanced machine sounds for both training and
inference; (3) an approach that uses both noisy and enhanced ma-
chine sounds during training, but only noisy machine sounds during
inference. In the third approach, we expect the ASD models to focus
on machine sound components by jointly using enhanced machine
sounds for the classification training.

We also utilize the enhanced machine sounds for pseudo-label
generation. We separately use pseudo labels generated from noisy
and enhanced machine sounds, as those generated from noisy
sounds can reflect noise differences [3], while those from enhanced
sounds may reflect the loss of machine sound components.

3. EXPERIMENTAL EVALUATIONS

3.1. Experimental setups

We conducted an experimental evaluation using the DCASE 2025
Challenge Task 2 development dataset (ToyADMOS2 [5], MIMII
DG [6]) and the additional training dataset. The development
dataset included training and test data of seven machine types: bear-
ing, fan, gearbox, valve, slider, ToyCar, and ToyTrain. Also, the
additional training dataset included training data for the other eight
machine types. The training data included 1,000 samples of nor-
mal data for each machine type, with 990 samples from the source
domain and 10 from the target domain. Furthermore, the supple-
mentary data including 100 samples of either clean machine sounds
or noise was provided for each machine type. The test data in the
development dataset included 50 samples for each machine type,
domain, and normal/anomalous class. Each recording was a 5 to
12-second single channel signal sampled at 16 kHz.

The architecture of the TSE model was a small-size TF-
Locoformer [18] without positional encoding. For the short-time
Fourier transform (STFT) used in the TF-Locoformer, the DFT size
and frame shift were set to 512 and 128, respectively. λ was set
to 0.5 and LD was the negative signal-to-noise ratio (SNR) loss.

Table 1: Evaluation results. The values represent the harmonic
mean of the official scores over all machine types. “Ny” and “Enh”
indicate the noisy and enhanced machine sounds, respectively. In
the “Label” column, “Ny” and “Enh” indicate pseudo labels gen-
erated from the noisy and enhanced machine sounds, respectively,
while “Org” indicate the original labels. The last row shows the
performance obtained by the frozen pre-trained SSL models.

Train Test Label Spec BEATs EAT SSLAM

Ny Ny
Org 60.10 61.74 62.40 62.31
Ny 61.77 64.14 63.69 63.34
Enh 61.61 63.63 63.95 62.78

Enh Enh Ny 62.63 64.54 63.32 64.20
Enh 62.36 64.37 63.87 64.75

Ny,
Enh Ny

Org 60.77 61.62 62.51 61.95
Ny 61.86 63.84 63.82 63.55
Enh 61.04 62.99 63.73 63.77

No Ny No 58.22 60.20 59.30

LC was the the Sub-cluster AdaCos (SCAC) [19] with 16 trainable
sub-cluster centers and a fixed scale parameter. We trained the TSE
model for 2,400 epochs with a mini-batch size of 8 (i.e., 28,800
steps). Each sample was truncated or padded to 6 seconds. We used
the AdamW optimizer [20] with gradient clipping at a maximum
L2-norm of 5. The learning rate was linearly increased from 0 to
0.0004 over the first 1,250 steps. The SNR for mixing xTarget and
n was randomly selected from the range [−5, 5) dB. We used the
TSE model except for fan, gearbox, BandSealer, and ToyRCCar.

For Spec of the ASD frontend, we used three multi-resolution
spectrograms with DFT sizes of 256, 1024, and 4096. The frame
shift was half of the DFT size, and frequency bins in the range of
200Hz to 8000Hz were used. The network consisted of the ResNet
architecture similar to that in [21]. DSpec was set to 128 and M
was 4, resulting in a 512-dimensional feature. DSpec was set to
128 and the number of input features M was 4, resulting in a 512-
dimensional feature. We trained Spec for 16 epochs when using
either the noisy or enhanced dataset, and for 8 epochs when jointly
using both datasets. We used the AdamW optimizer with a fixed
learning rate of 0.001 and a mini-batch size of 64. The loss function
was the SCAC with 16 trainable sub-cluster centers and a fixed scale
parameter. Mixup [22] was applied with a probability of 50%.

For SSL-based frontends, we used pre-trained check-
points from their respective repositories: BEATs iter3.pt
for BEATs, EAT-base epoch10 pt.pt for EAT, and
SSLAM Pretrained/checkpoint last.pt for SSLAM.
LoRA was applied to the query and key projection layers within
the Transformer encoder for BEATs, and to the query, key, and
value projection layers for EAT and SSLAM. For all SSL-based
frontends, the LoRA rank was set to 64 and DSSL was set to 256.
We fine-tuned SSL models for 25 epochs with a mini-batch size
of 8 (i.e., 46,875 steps). We used the AdamW optimizer, and the
learning rate was linearly increased from 0 to 0.0001 over the first
5,000 steps. The loss function and mixup probability were the same
as those used for Spec.

For SMOTE in the backend, we set the oversampling ratio to
20% and the number of neighbors to 2. For each system, we aver-
aged anomaly scores across five different random seeds.

As a evaluation metric, we used the official scores, calculated as
the harmonic mean of the area under the receiver operating charac-



Detection and Classification of Acoustic Scenes and Events 2025 Challenge

Table 2: Evaluation results for the ensemble system combining Spec, BEATs, EAT, and SSLAM under each training and testing condition.
The values represent the official scores. “hmean” indicates the harmonic mean of the scores over all machine types. “Ny” and “Enh” indicate
the noisy and enhanced machine sounds, respectively. In the “Label” column, “Ny” and “Enh” indicate pseudo labels generated from the
noisy and enhanced machine sounds, respectively, while “Org” indicate the original labels. The last row shows the performance obtained
by the frozen pre-trained SSL models. ⋆ and † indicate machine types without attribute information and with supplementary clean machine
sounds, respectively.

ID Train Test Label bearing⋆† fan gearbox slider⋆ ToyCar† ToyTrain⋆ valve† hmean

1⃝
Ny Ny

Org 59.95 54.54 66.16 58.05 59.03 64.98 80.39 62.43
2⃝ Ny 61.45 53.67 69.15 59.32 59.81 67.22 83.43 63.75
3⃝ Enh 70.44 52.80 68.62 56.93 59.69 65.81 81.60 63.94

4⃝
Enh Enh Ny 68.40 52.03 68.07 60.56 59.53 65.77 87.95 64.57

5⃝ Enh 68.43 51.71 67.54 60.06 59.73 66.57 89.11 64.58
6⃝

Ny,
Enh Ny

Org 57.05 53.38 66.63 60.96 59.24 64.85 82.45 62.44
7⃝ Ny 65.14 53.75 67.48 60.89 58.93 65.77 84.36 64.09
8⃝ Enh 67.08 51.78 65.72 59.62 59.18 65.39 82.97 63.38

9⃝ No Ny No 55.51 51.78 55.68 58.98 62.26 66.90 79.54 60.44

Table 3: Evaluation results for the ensemble system combining different training and testing conditions. The values represent the official
scores. “hmean” indicates the harmonic mean of the scores over all machine types. ⋆ and † indicate machine types without attribute informa-
tion and with supplementary clean machine sounds, respectively.

Submission Name ID Ensemble bearing⋆† fan gearbox slider⋆ ToyCar† ToyTrain⋆ valve† hmean

Baseline (MSE) 59.75 49.90 55.26 55.68 56.73 55.73 62.42 56.26
Baseline (MAHALA) 61.45 51.34 58.61 57.58 55.87 48.37 56.37 55.34

Fujimura NU task2 1 10⃝ ( 4⃝+ 5⃝)/2 69.31 51.92 68.19 60.66 59.54 66.37 88.94 64.85
11⃝ ( 6⃝+ 7⃝+ 8⃝)/3 65.48 52.88 66.21 60.31 58.89 66.48 84.05 63.76
12⃝ ( 2⃝+ 3⃝+ 4⃝+ 5⃝)/4 70.80 52.54 68.69 59.45 59.79 66.75 86.22 64.91

Fujimura NU task2 2 0.75 1⃝+0.25 9⃝ 59.77 54.18 65.40 58.23 59.18 65.79 80.92 62.44
0.75 10⃝+0.25 9⃝ 70.07 51.77 66.37 60.38 59.88 66.86 89.08 64.75

Fujimura NU task2 3 0.75 11⃝+0.25 9⃝ 64.98 52.90 65.51 59.94 59.31 67.06 84.58 63.73
Fujimura NU task2 4 0.75 12⃝+0.25 9⃝ 70.78 52.46 66.71 59.23 59.99 67.40 86.64 64.75

teristic (ROC) curve (AUC) and partial AUC (pAUC) with p = 0.1.
The AUC was calculated for each domain using the normal samples
from that domain and the anomalous samples from both domains,
while the pAUC was calculated using samples from both domains.

3.2. Experimental results

Table 1 shows the harmonic mean of the official scores over all ma-
chine types for each frontend under each training and testing con-
dition. First, we can see that Spec, BEATs, and SSLAM achieve
their best performance when using enhanced machine sounds for
both training and testing with pseudo labels. The effectiveness of
pseudo labels is also observed under each training and testing con-
dition. However, no significant improvement is observed by jointly
using noisy and enhanced machine sounds for training in terms of
the harmonic mean over machine types in the development dataset.
Additionally, there is no consistent trend indicating whether pseudo
labels generated from noisy or enhanced machine sounds lead to
better performance. Finally, we also can see that SSL models out-
perform Spec in the development dataset.

Table 2 shows the official scores of the ensemble system com-
bining Spec, BEATs, EAT, and SSLAM under the same training
and testing conditions. The ensemble weights were set to 1/2, 1/6,
1/6, and 1/6 for Spec, BEATs, EAT, and SSLAM, respectively. We
observe that systems 4⃝ and 5⃝ achieve high performance, signif-

icantly improving results for the bearing and valve machine types.
Additionally, we can see that system 9⃝ achieves competitive per-
formance on ToyCar and ToyTrain without fine-tuning the frontend.

Table 3 shows the official scores of the ensemble system com-
bining different training and testing conditions, compared with the
official baseline systems [7]. Our final ensemble system signifi-
cantly outperforms the official baseline.

4. CONCLUSION

In this report, we presented our systems for DCASE 2025 Challenge
Task 2. First, we utilized the supplementary data to train a TSE
model to improve downstream ASD performance. Second, we em-
ployed several state-of-the-art ASD frontends and combined them
via ensemble of their anomaly scores. Third, we applied pseudo-
label generation techniques to effectively train the frontends. The
experimental results on the development dataset demonstrated the
effectiveness of the proposed techniques, with our system achiev-
ing an official score of 64.91%.
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