
Detection and Classification of Acoustic Scenes and Events 2025 Challenge

STEREO SOUND EVENT LOCALIZATION AND DETECTION BASED ON PSELDNET
PRETRAINING AND BIMAMBA SEQUENCE MODELING

Technical Report

Wenmiao Gao

Denmark Technical University
2800 Kgs. Lyngby Denmark

wenmiaogao@163.com

Yang Xiao

The University of Melbourne
Melbourne, Australia

yxiao9550@student.unimelb.edu.au

ABSTRACT

Pre-training methods have achieved significant performance im-
provements in sound event localization and detection (SELD) tasks,
but existing Transformer-based models suffer from high computa-
tional complexity. In this work, we propose a stereo sound event
localization and detection system based on pre-trained PSELDnet
and bidirectional Mamba sequence modeling. We replace the Con-
former module with a BiMamba module and introduce asymmetric
convolutions to more effectively model the spatiotemporal relation-
ships between time and frequency dimensions. Experimental results
demonstrate that the proposed method achieves significantly better
performance than the baseline and the original PSELDnet with Con-
former decoder architecture on the DCASE2025 Task 3 develop-
ment dataset, while also reducing computational complexity. These
findings highlight the effectiveness of the BiMamba architecture in
addressing the challenges of the SELD task.

Index Terms— DCASE2025, Sound event localization and de-
tection(SELD), pre-trained SELD networks

1. INTRODUCTION

The objective of the sound event localization and detection (SELD)
task is to identify sound events from predefined target classes, track
their temporal dynamics, and estimate their respective spatial tra-
jectories where they are active[1].This technology plays a vital role
in various real-world applications, such as robotic auditory sensing,
human-compute interaction, and immersive audio experiences.

Since 2019, the Sound Event Localization and Detection
(SELD) task has been featured as an annual challenge in the
DCASE competition, attracting an increasing number of researchers
and driving dramatic progress in the field. From 2019 to 2021, the
datasets consisted primarily of clean sound events convolved with
spatial room impulse responses (SRIRs) recorded in various rooms.
In 2022, real recorded audio data was introduced for the first time
as part of the task dataset. In 2023, the task was further expanded
from an audio-only track to an audio-visual track, with 360-degree
panoramic videos and corresponding audio provided for the dataset.
In 2024, a new distance estimation subtask was introduced. This
year, the original FOA audio and 360-degree video have been con-
verted into stereo audio and perspective video, simulating the sce-
nario of regular media content.

Deep learning methods have significantly advanced the field by
greatly improving the performance of both sound event classifica-
tion (SEC) [2, 3, 4, 5, 6, 7] and direction of arrival (DOA) estimation

[8, 9] compared to traditional machine learning and signal process-
ing approaches. Adavanne et al. [1] proposed the first end-to-end
SELDnet, enabling simultaneous sound event detection and local-
ization. However, this approach could not address the overlap prob-
lem, where multiple sound sources of the same class occur simul-
taneously at different locations. To tackle this issue, the track-wise
format and permutation invariant training were introduced in EINv2
[10], which employs two parallel branches for SED and DOA tasks,
as well as an additional parameter-sharing branch. Nevertheless,
such multi-branch SELD models require balancing the loss func-
tions of both tasks during training, which increases system com-
plexity and computational cost. To address these limitations, the
class-wise ACCDOA [11] output format was proposed, which in-
tegrates SED and localization tasks into a single Cartesian vector,
allowing the SELD task to be solved as a single-target problem. Fur-
thermore, the Auxiliary Duplicated Permutation Invariant Training
(ADPIT) method was introduced to effectively handle the homoge-
nous overlap issue, the MultiACCDOA [12] is currently recognized
as the baseline output format.

Previous studies have shown that increasing the amount of
training data can significantly enhance the performance of SELD
systems. This is also why data augmentation techniques such as
Audio Channel Swapping (ACS) have become highly popular, as
swapping audio channels can effectively augment the amount of real
data. However, it is challenging to collect or simulate large-scale
spatial audio data of specific types in real-world scenarios. There-
fore, fine-tuning pre-trained SELD models with a limited amount of
data has become a practical solution to address the issue of insuffi-
cient training samples. Hu et al. [13] proposed PSELDnet, which is
built upon state-of-the-art pre-trained architectures for sound event
classification, such as PANNs [14], PaSST [15], and HTS-AT [16],
and is trained on large-scale synthetic datasets. Experimental results
demonstrate that PSELDnet dramatically outperforms the baseline
across multiple downstream datasets.

In this year’s challenge, the STARSS23 [17] dataset has been
adapted to a fixed-perspective setting, with FOA audio converted to
mid-side (M/S) stereo format. This adaptation makes it consider-
ably more difficult to generate simulated data, as it requires the si-
multaneous generation of both spatially consistent audio and video
data, which is technically challenging and resource-intensive. As a
result, fine-tuning the PSELDnet pre-trained model directly on the
stereo dataset becomes a natural and effective solution for this task.

In addition to pretrained models, the Mamba [18] architecture
successfully combines CNN’s local feature extraction capabilities
with Transformer’s global modeling advantages through selective
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state space (SSM), while maintaining linear computational com-
plexity O(n), achieving SOTA performance across multiple audio
and speech domains. In the field of speech separation, Li et al. [19]
replaced BLSTM in the TF-GridNet architecture with BiMamba,
achieving SOTA results on multiple datasets. Zhang et al. [20] em-
ployed BiMamba as a replacement for MHSA, demonstrating excel-
lent performance in speech enhancement tasks. Mu et al. [21] re-
placed the Conformer module with BiMamba based on the EINV2
framework, surpassing EINV2’s performance in multi-task output
SELD systems. Additionally, Liu [22] proposed ND-BiMamba2
based on Mamba2 [23], which can effectively process 2D data.

In this report, we focus on the audio-only track and use the of-
ficial development dataset, which is derived from the STARSS23
dataset and converted to stereo format through Mid-side conver-
sion. To meet the input requirements of the pretrained PSELD-
net, we regenerate pseudo FOA data from stereo signals. During
training, we employ audio channel swap (ACS) ([24]) for data aug-
mentation. We comprehensively fine-tune the pretrained PSELDnet
models (including multi ACCDOA HTS-AT model and multi ACC-
DOA CNN14-Conformer model) for the SELD task, replacing the
Conformer architecture with BiMamba architecture and introduc-
ing asymmetric convolutions to reduce computational complexity
and decouple audio time-frequency domain features. Experimental
results demonstrate that the BiMamba architecture performs excel-
lently in SELD tasks, significantly improving system performance,
while the general PSELDnet can be effectively transferred to stereo
SELD tasks, greatly surpassing the baseline performance.

2. THEORY

The Mamba architecture, based on the S4 (Structured State Space
Sequence) model [25, 26], effectively combines the advantages of
CNN and RNN, allowing the use of CNN’s parallel computation
benefits during training and RNN’s temporal modeling capabilities
during inference. The introduction of state-selection mechanisms
allows the model to selectively attend to or ignore specific parts of
the input sequence, which is crucial for accurate discrimination of
overlapping audio events.

Specifically, inspired by continuous linear time-invariant sys-
tems in signal processing and control systems, it transforms the in-
put sequence x(t) ∈ R to the output sequence y(t) ∈ R using
higher dimensional hidden states h(t) ∈ RN×1, which can be writ-
ten as follows:

h′(t) = Ah(t) +Bx(t)

y(t) = CTh′(t) +Dx(t)
(1)

where A ∈ RN×N , B ∈ RN×1,C ∈ RN×1 , and D represent
the state transition matrix, the input projection matrix, the output
projection matrix, and the skip connection matrix respectively.

In practice, to handle discrete sequences, discretization of the
SSM is necessary. Using the Zero Order Holding method, we in-
troduce a time step ∆ to sample the continuous matrices A and B,
obtaining discrete representations Ā and B̄, as follows:

Ā = exp(∆A)

B̄ = (∆A)−1(exp∆A− I) ·∆B
(2)

and the discretized structured SSM are as follows:

hk = Āhk−1 + B̄xk

yk = CThk

(3)

The above discretized parameters vary over time using a se-
lective state space modeling (SSM) approach, similar to the gating
mechanism in RNNs, enabling the model to selectively attend to
or ignore input features at each time step, thereby enhancing the
model’s information processing capability.

3. PROPOSED METHOD

3.1. Feature Extraction

Since PSELDNet operates on FOA-format audio data by concate-
nating 4-channel log-mel spectrograms with 3-channel intensity
vectors, to meet the input feature requirements of the pre-trained
network, we convert the stereo left-right ear signals L(n) and R(n)
back to the FOA components W (n) and Y (n) according to the
ACN/SN3D convention. The remaining components X(n) and
Z(n) are set to zero, as formulated in Equation (4)

W (n) =
L(n) +R(n)

2

Y (n) =
L(n)−R(n)

2

X(n) = 0

Z(n) = 0

(4)

These parameters form a four-channel pseudo FOA representation.
Subsequently, we extract the corresponding log-mel spectrograms
and intensity vectors, which are then concatenated to construct a
7-channel input feature tensor.

3.2. Data Augmentation

To mitigate overfitting and enhance the overall system’s robustness
and generalization capability, we primarily employ Audio Channel
Swapping (ACS) to exchange left-right ear channels for generat-
ing augmented Direction of Arrival (DOA) labels. In this year’s
challenge, DOA labels were rotated to a fixed frontal perspective as
the reference coordinate system, which introduces front-back ambi-
guity. To resolve this, the azimuth labels are folded into the range
[-90°, 90°] through backward-forward mapping, while elevation an-
gles remain excluded from consideration this year. Through ACS
implementation, the development dataset is effectively doubled via
geometric symmetry exploitation.

3.3. Network Architecture

In this work, we improve upon the PSELDnet pretrained mod-
els. PSELDnet primarily consists of two pretrained architectures:
CNN14-Conformer hybrid architecture and HTS-AT pure Trans-
former architecture. Our main innovation lies in replacing the Con-
former decoder in the CNN14-Conformer architecture with a Bi-
Mamba module combined with asymmetric convolutions as the de-
coder, forming the CNN14-BiMamba hybrid architecture.

Specifically, the CNN14-BiMamba architecture employs
CNN14 as the encoder and BiMamba module combined with asym-
metric convolutions as the decoder. The CNN14 backbone network
consists of six VGG-style convolutional blocks with 3×3 convolu-
tions, batch normalization, and ReLU activation, enabling hierar-
chical extraction of fine-grained spectral-temporal features. The
BiMamba module, based on the Mamba architecture, overcomes
the causal limitations of traditional Mamba through bidirectional
processing mechanisms, enabling simultaneous capture of forward
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and backward temporal dependencies. In the specific implemen-
tation, we separately process input features through forward and
backward Mamba processing, then concatenate and fuse the hidden
representations from both directions, finally compressing the chan-
nel dimensions through a linear layer to obtain the output. The in-
troduction of asymmetric convolutions further enhances the model’s
ability to decouple time-frequency domain features in stereo SELD
tasks, effectively improving recognition performance for overlap-
ping audio events through alternating processing of time and fre-
quency dimensions.

Previous work [20] has shown that replacing the MHSA mod-
ule in Conformer with BiMamba can improve the capture perfor-
mance of low-abstraction-level spectral information in speech en-
hancement tasks. Here, we also attempt to apply this method to
stereo SELD tasks.

For comparative experiments, we use the following models:
First, the original CNN14-Conformer model, which is a CNN-
attention hybrid network where CNN14 contains a stack of 6 VGG-
style CNN blocks, and the Conformer module contains two feed-
forward layers sandwiching multi-head self-attention and convolu-
tion modules with residual connections. The CNN blocks extract lo-
cal fine-grained features, while the Conformer blocks capture local
and global contextual dependencies in audio sequences. Second, the
HTS-AT model combines Swin Transformer and token-semantic
modules. The Swin Transformer focuses on self-attention within
each local window, establishing connections between consecutive
layers through shifted window attention mechanisms and building
hierarchical feature maps. The token-semantic module employs a
convolutional layer as the head layer, converting feature maps to
activation maps for timestamp prediction.

Finally, the traditional CRNN baseline model combines the ad-
vantages of convolutional neural networks and recurrent neural net-
works, providing a benchmark reference for our experiments.

In the final stage of the two main models, we apply Tanh acti-
vation function to DoA (Direction of Arrival) estimates and ReLU
activation function to distance estimates. The Tanh function con-
strains DoA outputs to the range [−1, 1], which can be mapped
to azimuth angle range [−90◦, 90◦], ensuring predictions remain
within the valid field of view. The ReLU function enforces non-
negative distance estimates, which is physically meaningful as dis-
tances cannot be negative. This design choice aligns model outputs
with the actual constraints of the task, as we primarily focus on az-
imuth angles within the visible light range and require all distance
values to be non-negative.

4. TRAINING

The proposed system is trained on the development dataset (stereo
format) of STARSS23[27]. The audio is resampled to 24 kHz, and
64 mel filters are used for feature extraction. The short-time Fourier
transform (STFT) is computed with a hop length of 20 ms (480
samples) and a window length of 40 ms. Each input feature consists
of 250 frames, corresponding to 50 label frames.

For training, the random seed is set to be 42. Due to different
parameter counts and memory requirements across models, we em-
ploy different batch sizes, learning rates, and weight decay values.
To simplify model names, we uniformly omit the prefix ”CNN14”.
The training configurations for each model are as follows: HTSAT
and Conformer models use a learning rate of 1e-4, weight decay of
1e-4, and batch size of 256; ConBiMamba uses 1e-4, 5e-6, and 32
respectively; BiMamba uses 1e-4, 5e-6, and 128; and BiMambaAC

uses 3e-5, 5e-6, and 32. All models are trained for 120 epochs
using the Adam optimizer with a ReduceLROnPlateau scheduler
(mode=’max’, reduction factor=0.5, patience=5). Following the
baseline protocol, we evaluate our models on the test split of the
DCASE2025 Task 3 development set and select the checkpoint with
the best validation location-dependent F1-Score as the final model.

Full fine-tuning of all model parameters is adopted due to the
substantial differences between the input features and those used in
the pre-trained models, as well as the introduction of a new task.
This allows the model to better adapt to the new data distribution
and task-specific objectives, which may not be achievable through
partial fine-tuning.

5. RESULTS

Table 1 presents a quantitative comparison between the baseline
system and various pre-trained models on the development set.
The metrics reported include the number of model parameters, the
location-dependent F1-score (F20◦ , higher is better), the Direction
of Arrival Error (DOAE, lower is better), and the Relative Distance
Error (RDE, lower is better).

The baseline system contains only 0.7 million parameters and
achieves an F20◦ of 22.8%, with a DOAE of 24.5° and an RDE
of 41%. Among the pre-trained models, HTS-AT (28M parame-
ters) shows significant improvements with an F20◦ of 34.0% and
a DOAE of 15.8°. The Conformer model (210M parameters)
achieves comparable performance with an F20◦ of 34.4% and a
DOAE of 18.1°, while maintaining the lowest RDE of 33%.

The BiMamba-based models exhibit different performance
characteristics. ConBiMamba (338M parameters), while perform-
ing well in speech enhancement tasks, shows mediocre performance
in stereo SELD tasks with a large parameter count and significant
distance localization error (RDE of 53%). BiMamba (178M pa-
rameters) achieves an F20◦ of 36.2% with a DOAE of 16.6°. No-
tably, BiMambaAC (76M parameters, 4.63G MACs) achieves the
best overall performance with an F20◦ of 39.6%, a DOAE of 15.8°,
and an RDE of 33%. Compared to BiMamba, the incorporation of
asymmetric convolution significantly improves model performance
while reducing parameter count, achieving superior results across
all metrics with only 76M parameters and 4.63G MACs.

Table 1: Comparison of different model architectures on the devel-
opment set

Model Params MACs F20◦ ↑ DOAE ↓ RDE ↓

BiMambaAC (s1) 76M 4.63G 39.6% 15.8◦ 33%
BiMamba (s2) 178M 7.57G 36.2% 16.6◦ 33%
Conformer (s3) 210M 4.69G 38.2% 15.9◦ 33%
HTS-AT (s4) 28M 2.88G 35.1% 16.5◦ 30%
ConBiMamba 338M 7.98G 36.2% 16.9◦ 53%
Baseline 0.7M 57M 22.8% 24.5◦ 41%

6. CONCLUSION

In this work, we propose a novel approach for stereo sound event lo-
calization and detection (SELD) by combining PSELDnet pretrain-
ing with BiMamba sequence modeling. Our experimental results
demonstrate several key findings:First, the integration of pre-trained
models significantly improves SELD performance compared to the
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baseline system. The HTS-AT model achieves substantial improve-
ments in both F1-score and DOAE, while the Conformer model
maintains competitive performance. Second, BiMamba-based ar-
chitectures show superior performance in stereo SELD tasks. The
BiMamba model achieves improved F1-score and DOAE compared
to traditional architectures, demonstrating the effectiveness of state
space modeling for audio sequence processing. Most importantly,
our proposed BiMambaAC model, incorporating asymmetric con-
volution with BiMamba, achieves the best overall performance
across all metrics while maintaining a relatively compact parameter
count. This demonstrates that the combination of asymmetric con-
volution and BiMamba architecture not only enhances model per-
formance but also reduces computational complexity compared to
larger models like ConBiMamba. The results validate the effective-
ness of our approach in leveraging pre-trained models and advanced
sequence modeling techniques for stereo SELD tasks, providing a
promising direction for future research in audio event and localiza-
tion analysis.
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