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ABSTRACT

This technical report presents our submission to Task 3 of the
DCASE 2025 Challenge. To enhance the model’s generalization
ability, we adopt the official synthetic data generation pipeline to
expand the training set. In addition, SpecAugment is applied for
data augmentation to improve event recognition performance. To
address the challenges of ambiguous localization and long-range
temporal dependencies inherent in stereo SELD, we use the Mamba
architecture, which effectively captures both local and global tem-
poral dynamics, thereby improving overall system performance.

Index Terms— Sound event localization and detection, audio-
visual fusion, Mamba, SpecAugment

1. INTRODUCTION

Sound Event Localization and Detection (SELD) [1, 2, 3, 4, 5] in-
volves identifying target-class sound events, tracking their temporal
activity, and estimating their spatial positions. These spatial cues
are critical for machine perception tasks such as scene understand-
ing, source tracking, and intelligent environment interaction.

Unlike previous challenges that emphasized four-channel for-
mats such as first-order Ambisonics and microphone array record-
ings, the DCASE 2025 Challenge shifts focus to SELD using
stereo audio [6, 7, 8]. Due to inherent ambiguities in stereo au-
dio—particularly in distinguishing front-back and top-bottom di-
rections—the task limits direction-of-arrival (DOA) estimation to
azimuth angles along the left-right axis, and also includes distance
estimation. Task 3 of the challenge comprises two tracks: Track A
uses audio-only input for SELD, while Track B combines audio and
visual inputs with a limited field of view, requiring models to also
determine whether events are onscreen or offscreen.

This technical report presents our submission systems for Task
3. Our systems enhance the detection of audio signals or audio-
visual information by a hybrid framework based on Transformer [9]
and Mamba [10] to fuse audio-visual bimodal features and model
long sequence features for the fused features to improve the overall
model performance. During the implementation, we adopt a simple
network structure rather than a complex redundant one, use simple
feature extraction and achieve competitive performance.

†These authors contributed equally to this work.
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2. OUR SYSTEMS

2.1. Track-A: Audio-only inference

A-System1: For audio-only input, spatial and semantic cues must
be inferred from the temporal and directional patterns in stereo au-
dio. We adopt the Mamba [10] architecture to model long-range
dependencies, which is crucial for accurate DOA, distance, and on-
screen/offscreen classification under ambiguous, overlapping con-
ditions. With its linear-time complexity and selective state space
design, Mamba enables precise tracking of sound sources and en-
hances the spatial-temporal resolution of audio-only SELD systems.
A-System2: Building on A-System1, we incorporate a synthetic
data augmentation strategy [11, 6] into the training process, result-
ing in our submission A-System2.
A-System3: Building on A-System1, we apply the SpecAugment
strategy [12] to augment the audio data, resulting in our submission
A-System3.

2.2. Track-B: Audio-visual inference

B-System1: Based on B-Baseline (i.e., our replicated version of the
baseline[13, 14, 15]), we do not modify the model architecture of
the baseline. Specifically, we follow the synthetic data pipeline of
the baseline to generate 30,000 synthetic samples. These samples
are used to augment the original dataset in order to enhance the
generalization capability of the model.
B-System2: Building on B-System1, we apply the SpecAugment
strategy [12] to augment the audio data, resulting in our submission
B-System2.
B-System3: Building on B-System1, we adopt a hybrid framework
based on Transformer and Mamba. First, we extract audio and vi-
sual features and fuse them through cross attention mechanism sim-
ilar to B-System1; then, the fused features are passed through the
Mamba architecture to model long-range dependencies in audio-
visual sequences for stereo SELD. Given the limited field-of-view
and angular ambiguity of stereo input, capturing extended tempo-
ral context is crucial. Mamba enables efficient and expressive se-
quence modeling through selective state space dynamics, allowing
our system to better detect event boundaries, estimate DOA, and
classify onscreen/offscreen events, thereby improving the overall
spatial-temporal accuracy and robustness of SELD.
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3. EXPERIMENTS

3.1. Dataset

We conducted our experiments on the development dataset [13, 15,
16] of the DCASE 2025 Challenge Task 3. To expand the available
training data, we follow the official data synthesis pipeline provided
by the challenge organizers to generate 30,000 additional training
samples [11, 6].

3.2. Experimental Setup

The proposed methods are evaluated on a single NVIDIA 3090
GPU, using the same learning rate and learning rate update strat-
egy as the baseline configuration. For performance comparison, we
reproduce the baselines for Track A and Track B, and evaluate them
on the development dataset provided by Task 3 of the DCASE 2025
Challenge. The results are referred to as A-Baseline and B-Baseline
in Table 1 and Table 2, respectively.

3.3. Evaluation Metric

According to the evaluation metrics specified for Task 3 of the
DCASE 2025 official competition1, we adopt the F1-score as the
primary metric, which jointly considers detection accuracy, az-
imuth estimation, distance estimation, and, for audio-visual input,
onscreen presence estimation. In addition, we report the macro-
averaged Direction of Arrival Error (DOAE), Relative Distance Er-
ror (RDE), and Onscreen Accuracy (OSA) to provide a comprehen-
sive evaluation of spatial and visual localization performance.

3.4. Results

Table 1 presents the performance of the audio-only systems on
the development dataset. Among them, A-System3 achieves the
highest F20◦ score (i.e., 25.28), demonstrating the effectiveness of
SpecAugment and Mamba in enhancing localization accuracy.A-
System1 yields a slightly lower F20◦ score (22.94) than the A-
Baseline (23.67), but achieves the same RDE (0.32), indicating sta-
ble performance in distance estimation. In contrast, A-System2,
which uses synthetic data, performs almost worst across all metrics,
suggesting that synthetic data may introduce distribution mismatch.
These results highlight the benefits of SpecAugment and the impor-
tance of careful data selection in Mamba-based systems.

Table 1: Experimental results of the audio-only systems on the de-
velopment dataset.

System F20◦ ↑ DOAE↓ RDE↓

A-Baseline 23.67 21.7◦ 0.32
A-System1 22.94 23.5◦ 0.32
A-System2 21.95 28.2◦ 0.44
A-System3 25.28 23.0◦ 0.45

Table 2 summarizes the performance of the audio-visual sys-
tems on the development dataset. B-System2 achieves the best
F20◦/on-off score (19.63) and the lowest DOAE (22.3◦), demonstrat-
ing strong performance in both angular and direction estimation. B-
System3, which replaces the baseline encoder with Mamba, obtains

1https://dcase.community/challenge2025/

the best OSA score (0.81) and a competitive RDE (0.37), suggesting
better capability in detecting whether the target is on screen. In con-
trast, B-System1 and B-System2 share similar OSA scores (0.80),
but B-System1 yields the worst RDE (0.48) and DOAE (25.8◦).
These results indicate that combining SpecAugment with synthetic
data improves localization accuracy, while Mamba-based models
show potential for enhancing screen-aware detection.

Table 2: Experimental results of the audio-visual systems on the
development dataset.

System F20◦/on−off ↑ DOAE↓ RDE↓ OSA↑

B-Baseline 14.17 23.7◦ 0.33 0.76
B-System1 16.65 25.8◦ 0.48 0.80
B-System2 19.63 22.3◦ 0.46 0.80
B-System3 17.93 25.8◦ 0.37 0.81

4. CONCLUSION

This technical report presents our systems developed for Task 3 of
the DCASE 2025 challenge. The experimental results demonstrate
the effectiveness of our proposed systems for the stereo SELD task,
which provides performance improvement over the baselines, indi-
cating its potential for enhancing stereo SELD.
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