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ABSTRACT
This report presents GISP-HEU’s submission for Task 2 of the De-
tection and Classification of Acoustic Scenes and Events (DCASE)
2025 Challenge. The submission utilises pre-trained models for fea-
ture extraction to obtain refined audio representations. In addition,
a statistical weight is formulated based on the differences in audio
features between the test and training samples. This weight is ap-
plied during the testing phase to enhance the distinction between
normal and anomalous audio. The submission comprises four in-
dividual systems. System 1 utilises BEATs alongside the statisti-
cal feature difference weighting. System 2 builds on System 1 by
incorporating clean and noisy data during training. System 3 em-
ploys AnoPatch and uses development data spanning DCASE 2022
to DCASE 2025. Finally, System 4 is an ensemble of the previous
three systems.

Index Terms— Anomalous sound detection, pre-trained
model, statistical clustering, audio representation

1. INTRODUCTION

Unsupervised anomalous sound detection (ASD) focuses on identi-
fying whether the sound emitted by the target machine is anoma-
lous while only normal sounds are available for model training
[2, 3]. This is the main topic of the Detection and Classifica-
tion of Acoustic Scenes and Events (DCASE) Challenge Task 2
[4, 5, 6, 7, 8, 1]. In previous DCASE Challenge Task 2, i.e., DCASE
2021 and DCASE 2022, the machine types in the development set
are identical to those in the evaluation set. Thus, these methods
can adjust hyper-parameters based on the performance on the de-
velopment set. However, relying on anomalous data to adjust the
hyper-parameters of the model is not feasible in real-world scenar-
ios.

First-shot unsupervised anomalous sound detection is intro-
duced in Task 2 of the DCASE 2023 and 2024 Challenges [9, 4,
5, 10, 1]. In this case, the anomalous sounds for the target machine
types are not seen during training. As a result, many approaches that
depend on adjusting hyper-parameters based on the performance on
the development set are no longer applicable to first-shot ASD. Fur-
thermore, DCASE 2025 Challenge introduces the optional use of
clean machine or noise-only data for training, enabling participants
to enhance model robustness beyond the constraints of noisy oper-
ational recordings.

*Corresponding author.

This technical report introduces our submission systems based
on statistical learning. Statistical analysis is conducted on the de-
velopment set to calculate the difference in distribution between the
test sample and the training sample, which is then used to amplify
the gap between normal and anomalous samples.

Note that the proposed statistical analysis not only considers
the distribution difference between the test samples and the train-
ing samples, but also the distribution difference between the em-
beddings of the test samples and training samples. The proposed
statistical analysis is adopted to strengthen the audio feature rep-
resentation during the detection process to distinguish normal and
anomalous sounds.

2. PROPOSED SYSTEMS

2.1. System-1: Distribution Difference Weighted System

We use GenRep[11] as our backbone, which adopts the pre-trained
model BEATs [12] to extract features and uses the shallow features
of each layer for anomaly detection. Inspired by our previous work
[2], we assume that the difference in energy distribution between the
test set and the training set can reflect the difference between nor-
mal samples and abnormal samples. Therefore, a statistical strategy
is introduced to enhance feature representation,obtaining the statis-
tical feature difference representation to improve detection perfor-
mance, and forming the System-1.

2.2. System-2: Distribution Difference Weighted System with
Additional Noise-Only and Clean Data

As DCASE 2025 Task 2 allows the use of additional clean machine
data and noise-only data as supplementary training resources, we
extend System-1 to build System-2 by leveraging these resources
to expand the training data used for calculating distribution differ-
ences, thereby enhancing feature representation.

2.3. System-3: Data Augmented AnoPatch-Based System

Our third system replicates AnoPatch [13] and extends it by incor-
porating multi-year training data. Building on AnoPatch, which
leverages a ViT backbone pre-trained on AudioSet and fine-tunes
it specifically for machine audio, our system emphasizes patch-
level modeling to accommodate the inherent sparsity and structure
of machine-generated sounds. We further expand the training data
by aggregating all development sets from DCASE 2022 to 2025,
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Table 1: Performance comparison in terms of AUC-s, AUC-t and pAUC on the development dataset of DCASE 2025 Challenge Task 2.
Methods ToyCar ToyTrain Bearing Fan Gearbox Slider Valve Total

AUC-s AUC-t pAUC AUC-s AUC-t pAUC AUC-s AUC-t pAUC AUC-s AUC-t pAUC AUC-s AUC-t pAUC AUC-s AUC-t pAUC AUC-s AUC-t pAUC AUC-s AUC-t pAUC
AE-MSE [1] 71.05 53.52 49.70 61.76 56.46 50.19 66.53 53.15 61.12 70.96 38.75 49.46 64.80 50.49 52.49 70.10 48.77 52.32 63.53 67.18 57.35 66.78 51.39 52.94

AE-MAHALA [1] 73.17 50.91 49.05 50.87 46.15 48.32 63.63 59.03 61.86 77.99 38.56 50.82 73.26 51.61 55.07 73.79 50.27 53.61 56.22 61.00 52.53 65.51 50.05 52.72

System-1 69.14 75.24 54.65 77.71 73.16 57.42 60.90 68.52 61.51 54.94 58.68 53.06 70.24 70.24 57.79 78.41 56.76 53.80 85.14 61.56 65.50 69.52 65.61 57.39
System-2 68.82 75.44 55.40 78.20 73.52 56.35 60.65 75.04 62.57 55.06 57.80 50.72 70.08 70.64 58.00 75.84 56.16 53.16 85.80 60.00 63.80 69.25 65.96 56.80
System-3 68.29 87.04 61.56 76.65 60.32 50.24 56.57 62.24 52.21 57.88 66.76 52.21 74.73 70.28 59.70 78.41 57.60 52.47 93.67 77.68 72.46 70.38 67.58 56.42

Ensemble System 69.67 84.44 60.71 78.24 71.68 57.36 60.78 73.36 60.29 55.71 61.76 51.09 72.53 71.68 62.52 76.90 57.68 52.79 93.92 67.32 73.15 70.72 68.79 58.99

aiming to increase data availability and enhance the model’s gener-
alization capability.

2.4. System-4: Ensemble System

Finally, to take the advantages of each system, we adopt an en-
semble learning strategy [14] to integrate System-1, System-2 and
System-3, and build an ensemble system. Due to the difference in
machine types between the evaluation and development sets, the
system weights selected for each machine type on the development
set cannot be used on the evaluation set machines. Therefore, we
empirically select the same weight for all machine types in our en-
semble system.

3. EXPERIMENTS

3.1. Dataset

We conduct experiments on the dataset of DCASE 2025 Challenge
Task 2, which comprises a development dataset and an additional
dataset [9, 15, 16]. Note that, the machine types in the development
dataset are completely different from those in the additional dataset.
Our proposed systems are trained on the training set of the devel-
opment dataset and tested on the test set of the development dataset
for effectiveness validation.

3.2. Experimental Setup

For the proposed systems, the machine sound is used with its orig-
inal sampling rate of 16 kHz. Log-Mel spectrogram is used with a
window size of 1024 samples, and overlapping is 50%, where the
Mel-filter is set with 128 banks.

3.3. Evaluation Metric

Following the baseline [9], we evaluate our systems using AUC-
s, AUC-t, and pAUC metrics. Here, AUC-s and AUC-t represent
the Area Under the Curve (AUC) in the source and target domains,
respectively, and pAUC denotes the partial AUC. The total AUC-
s, AUC-t, and pAUC are computed as the harmonic mean of all
machine types.

3.4. Results

We compare our systems with the baseline systems of the DCASE
2024 Challenge Task 2, that is, AE-MSE and AE-MAHALA [9].
The results are given in Table 1, where we can see that all our sys-
tems outperform the baseline systems.

4. CONCLUSION

In this technical report, we present our systems for the DCASE 2025
Challenge Task 2, which utilise statistical difference and pre-trained

model strategies. Experimental results demonstrate that all our sys-
tems outperform the baseline models in first-shot anomalous sound
detection.
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