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ABSTRACT

This technical report presents our submitted system for Task 3 of
the Detection and Classification of Acoustic Scenes and Events
(DCASE) 2025 Challenge: Stereo Sound Event Localization and
Detection in Regular Video Content (SELD). The DCASE task 3 in-
cludes two tracks, and we participate exclusively in the audio-only
track. First, we perform data augmentation by employing audio
channel swapping (ACS) and data simulation techniques, expand-
ing the dataset to 3.7 times its original size. Subsequently, a single
ResNet-Conformer model is used to perform SELD predictions. To
further optimize the model and submit multiple model ensemble so-
lutions, we fine-tuned it on the original dataset after training it on
the augmented dataset. During model ensemble, we integrate two
models—SED-DoA and SED-SDE. Our approach is evaluated on
the development test set of the dataset.

Index Terms— Sound event localization and detection, source
distance estimation, ResNet-Conformer, model ensemble

1. INTRODUCTION

Given multichannel audio input, a Sound Event Localization and
Detection (SELD) system outputs one or more localization esti-
mates for each target sound class whenever such events are detected.
SELD plays a crucial role in machine auditory perception, support-
ing applications such as smart homes [1] and audio-visual scene un-
derstanding [2]. Moreover, audio-visual SELD datasets have shown
benefits in improving source separation [3] and speech recognition
[4]..

The SELD task can be divided into three sub-tasks: Sound
Event Detection (SED), Direction of Arrival (DoA), and Source
Distance Estimation (SDE). Traditional approaches address these
components separately using methods such as Hidden Markov
Models (HMM) for SED [5], MUSIC for DoA [6], and DRR for
SDE [7]. With the advent of the DCASE challenges and advance-
ments in deep learning, there has been growing interest in using
deep neural networks to jointly solve these tasks. From DCASE
2019 [8] to 2024 [9], the SELD challenges utilized four-channel au-
dio data, including first-order Ambisonics (FOA) and microphone
array recordings. In contrast, the current challenge adopts stereo
audio data to address SELD tasks within common audio and media
scenarios. Given the inherent angular ambiguities of stereo audio,
particularly in elevation and front-back resolution, this task restricts
DoA estimation to azimuthal angles along the horizontal (left-right)
plane.

Prior to DCASE 2024, SELD tasks typically included only
SED and DoA. [10] simplified the DoA estimation into a multi-
direction classification problem and employed a CNN to jointly ad-
dress both SED and DoA. However, due to the CNN’s limited ca-
pacity for modeling temporal features, [11, 12] proposed using a
CRNN for the SELD task. The CRNN architecture uses a shared
backbone to predict both SED and DoA, with the two outputs shar-
ing the CNN and RNN modules except for the final output layers.
However, due to limited capacity, CRNNs often struggle to cap-
ture complex temporal dependencies, motivating the integration of
more expressive architectures such as ResNet-GRU [13], RD3Net
[14], ResNet-Conformer [15, 16, 17, 18] , CST-Former [19], and
SELD-SSAST[20].

In addition to increasing model capacity, optimizing the out-
put representation is also an effective strategy for improving model
performance. Since SELD involves two outputs, balancing the
respective losses during training introduces additional challenges.
The activity-coupled cartesian direction of arrival (ACCDOA) [21]
framework addresses this by integrating the SED and DoA outputs,
where the SED output is represented by the magnitude of the DoA
vector. The ACCDOA framework elegantly reformulates SELD as
a single-task problem by embedding SED confidence into the mag-
nitude of the DoA vector. To address the issue of unrecognized
overlapping sound events of the same class in polyphonic scenar-
ios, [22] proposed the Multi-ACCDOA representation. Addition-
ally, [23] introduced the ENV2 approach. With the incorporation
of SDE into the SELD task, [24] further proposed a framework that
integrates SED and SDE.

Building on these existing works and aligned with the ob-
jectives of DCASE2025, we adopt the ResNet-Conformer as our
model. We augment the training dataset, increasing its size by a fac-
tor of 3.7 through a combination of audio channel swapping (ACS)
and synthetic generation methods. Finally, we apply the model en-
semble strategy from [18] to integrate the SED-DoA and SED-SDE
models.

2. PROPOSED METHOD

2.1. Audio Data Augmentation

The provided dataset consists of 30,000 audio clips, each approxi-
mately 5 seconds in length, including 16,214 training samples and
13,786 testing samples, totaling around 41 hours of audio. Com-
pared to the datasets from the previous two years, DCASE2025 fea-
tures a significant increase in data volume; however, there remains
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Figure 1: Figures (a-c) illustrate three different audio-only SELD models. The descriptions are as follows: (a) Multi-ACCDOA representation
output (Multi-ACCDOA-SDE); (b) SED-DoA representation output; (c) SED-SDE representation output; The dimensions B, C, T , and F
denote the input’s batch size, feature channel count, feature frames, and Mel bands, respectively. N represents the number of classes, and
Track indicates the number of tracks in the Multi-ACCDOA representation. The output represents the output for one class in a single frame,
where a indicates whether the sound source is active, (x, y) represents the Cartesian coordinates of the sound source, and d represents the
distance of the sound source.

a need for further data augmentation. We apply data augmentation
only to the training set, keeping the test set unchanged.

The DCASE2025 dataset is derived from STASS2023 using the
Stereo SELD Data Generator. As a first step, we apply the ACS
technique to the training set of STASS2023, expanding it to eight
times its original size. We then use the Stereo SELD Data Genera-
tor to generate 56,214 training samples, which replace the original
training set. To further enrich the dataset, we incorporate single-
source audio samples from FSD50k and STASS2023 to create a
new dataset. Using Spatial Scaper [25], we synthesize 2,400 au-
dio clips, each 60 seconds long. These are subsequently segmented
using Stereo SELD Data Generator to produce 40,000 clips of 5
seconds each.

To generate data more closely aligned with the characteristics
of STASS2023, we do not use the default initialization parameters
when generating datasets with Spatial Scaper. Instead, we adjust
the parameters to match the properties of STASS2023 better. In dis-
cussing data distribution, our first priority is to ensure that the total
number of active event frames within a one-minute interval is con-
sistent with STASS2023. Additionally, we control the maximum
polyphony level to align the polyphonic distribution of the gener-
ated data with that of STASS2023. The final parameter settings
are as follows: Mean number of foreground events in a soundscape
= 25, Standard deviation of the number of foreground events = 3,
Maximum number of events allowed to overlap at any point in time
= 4, Maximum duration of any single sound event in seconds = 10s.

As a result, our final dataset comprises 110,000 audio clips of
5 seconds in length, with 96,214 used for training and 13,786 for
testing.

2.2. Features

In previous work, the FOA format was the preferred input repre-
sentation. However, this year’s task adopts a two-channel stereo
format. We extract two log-Mel spectrograms sampled at 24 kHz.

For the short-time Fourier transform (STFT), a Hann window of
480 points (20 ms) with a hop size of 240 points (10 ms) is used,
resulting in a 257-dimensional complex spectrogram. Both the log-
Mel spectrogram and intensity vectors are computed using 128-
dimensional real-valued vectors.

To enhance the robustness of the submitted results, we incor-
porate multi-channel features into one of the ensemble systems by
constructing stereo-based channels: W+Y and W–Y. First, we sum
the original stereo channels to obtain the W channel. Then, using
the W+Y, W–Y, and W signals, we compute the intensity vector,
following the method described in [20].

2.3. Network Architecture

In this work, we adopt the ResNet-Conformer architecture. As
shown in Figure 1(a), the input to the ResNet-Conformer model
has the shape (B, 2, 500, 128). Given this input, the ResNet mod-
ule learns the time-frequency relationships across multiple channels
while also capturing inter-channel differences. The output from the
ResNet module is reshaped and passed to the Conformer, which
models the temporal dependencies and further refines the features.
Finally, a fully connected layer maps the features to the output,
which is represented in the Multi-ACCDOA format. In the single-
model setting, the model uses a single fully connected module for
output. Our experiments show that under the hybrid loss, this design
achieves superior performance over two separate fully connected
layers.

For the model ensemble, we adopt the strategy proposed in
Method [18], integrating the SED-DoA and SED-SDE models. The
architectures of the SED-DoA and SED-SDE models are illustrated
in Figures 1(b) and 1(c), respectively.
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Table 1: Add caption

System Data Aug Multi Submit F20◦(%) ↑ DOAE(◦) ↓ RDE(%) ↓

Baseline % ✓ % 22.8% 24.5 41%
ResNet-Conformer % ✓ % 32.1% 15.7 33.5%
ResNet-Conformer ✓ ✓ ✓ 47.8% 13 30%

SED-DoA ✓ % % 50.4% 13.1 -
SED-SDE ✓ % % 55.9% - 30.5%

SED-DoA + SED-SDE (1) ✓ % ✓ 50% 13.1 36.6%
SED-DoA + SED-SDE (2) ✓ % ✓ 48.9% 13.1 30.4%
SED-DoA + SED-SDE (3) ✓ % ✓ 51.3% 12.5 33.4%

2.4. Network Training

The maximum number of training epochs is set to 100, with a batch
size of 32. We use the Adam optimizer along with a learning rate
scheduler. The initial learning rate is set to 0.0001 and is reduced
by half if no improvement is observed for 10 consecutive epochs.
When fine-tuning on the original dataset, the learning rate is initial-
ized to 0.00001.

3. RESULTS

We evaluate our proposed method using the DCASE2025 Task 3
Stereo SELD dataset. Initially, replacing the baseline model with
the ResNet-Conformer under the original dataset scale leads to a
noticeable performance improvement. However, due to the limited
data size, the ResNet-Conformer only achieves around a 10% im-
provement in the F20◦ . To further enhance task performance, we
apply data augmentation to expand the dataset to 3.7 times its origi-
nal size. Training the ResNet-Conformer on the augmented dataset
results in a 25% improvement in the F20◦ compared to the baseline.

To further boost the final results, we adopt a model ensem-
ble approach combining SED-DoA and SED-SDE models. First,
we evaluate the individual performance of the SED-DoA and SED-
SDE models. It is evident that excluding one task can significantly
improve performance on the remaining task. We submit three en-
semble systems: the first is a direct ensemble of the SED-DoA and
SED-SDE models; the second further fine-tunes these models on
the original dataset; and the third system trains the SED-DoA and
SED-SDE models using five-channel features.
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