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ABSTRACT

In this technical report, we describe the submission system for
DCASE2025 Task 5: Audio Question Answering. In this work,
we introduce a comprehensive audio question answering dataset
named DCASE-AQA-Boost, featuring diverse question types and
carefully curated answer options to address the limitations of ex-
isting collections. Based on the DCASE-AQA-Boost, we have de-
veloped two models, Kimi-Audio-SFT-12B and Qwen2-Audio-R1-
8B. Kimi-Audio-SFT-12B is obtained through a two-stage Super-
vised Fine-Tuning (SFT) process using the Pretraining and Finetun-
ing split of DCASE-AQA-Boost. Qwen2-Audio-R1-8B is trained
using our proposed three-stage training paradigm based on the
DCASE-AQA-Boost and DCASE2025 task 5 training set, which in-
corporates Supervised Fine-Tuning (SFT) and Group Relative Pol-
icy Optimization (GRPO).

Experimental results demonstrate that the proposed method sig-
nificantly improves the accuracy of multiple-choice audio question
answering systems. Kimi-Audio-SFT-12B and Qwen2-Audio-R1-
8B achieve 77.66% and 78.18% accuracy on the DCASE2025 Task
5 development set, respectively.

Index Terms— DCASE2025, Audio Question Answering,
Multi-stage Training, GRPO

1. INTRODUCTION

Audio Question Answering (AQA) represents a sophisticated mul-
timodal challenge that combines audio processing and natural lan-
guage understanding. This task requires systems to comprehend
audio signals and generate precise responses to queries about the
audio content.

The complexity of AQA lies in its multi-layered requirements:
systems must first process raw audio inputs, then extract meaning-
ful features, and finally perform complex reasoning to provide con-
textually appropriate answers. This process involves understanding
temporal relationships, identifying acoustic events, and making log-
ical inferences from the audio content. Building upon the founda-

tion of automated audio captioning, AQA extends beyond simple
description to enable interactive understanding of audio content.

Recent Large Audio Language Models [1], such as Qwen-
Audio [2], Qwen2-Audio [3], and Audio-Flamingo [4], primarily
enhance their instruction-following ability and task-specific per-
formance through Supervised Fine-Tuning (SFT). This fine-tuning
process typically involves aligning the model with human-annotated
audio-text pairs to better adapt to downstream tasks like audio cap-
tioning, retrieval, and question answering. Group Relative Pol-
icy Optimization (GRPO) [5], recently proposed by DeepSeek, is
a promising reinforcement learning method for fine-tuning large
models. R1-AQA [6] applies GRPO to Qwen2-Audio on the AVQA
[7] dataset, achieving state-of-the-art results on the MMAU bench-
mark [8].

In this technical report, we introduce two models: Qwen2-
Audio-R1-8B and Kimi-Audio-SFT-12B. Qwen2-Audio-R1-8B is
built upon Qwen2-Audio-Instruct-7B [3] and optimized using a
customized three-stage training paradigm. This paradigm incor-
porates SFT and GRPO, aiming to first enhance general audio
question-answering capabilities and subsequently improve perfor-
mance on DCASE2025 Task 5. The final model achieves an accu-
racy of 77.66% on the DCASE2025 Task 5 development set. Kimi-
Audio-SFT-12B is based on the pre-trained audio-language model
Kimi-Audio [9] and is optimized through a two-stage SFT process.
The first stage uses the Pretraining Split of DCASE-AQA-Boost,
while the second stage uses the Finetuning Split of DCASE-AQA-
Boost. The final model achieves an accuracy of 78.18% on the
DCASE2025 Task 5 development set.

A custom-built audio multiple-choice question dataset, re-
ferred to as DCASE-AQA-Boost, is used to optimize our models.
DCASE-AQA-Boost consists of a Pretraining Split and a Finetun-
ing Split. The Pretraining Split contains general audio question-
answer pairs across four categories: sound, music, speech, and
a cross-cutting category termed temporal. The Finetuning Split
is carefully curated to closely align with the DCASE2025 Task5
dataset, with the goal of improving model performance on the cor-
responding evaluation set. A more comprehensive version of the
dataset with broader applicability will be released in future work.
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2. DATA SOURCES

2.1. Pretraining Split

The following sources are utilized to construct the pretraining-split
of the dataset:

• Clotho [10]: A human-annotated audio captioning dataset fea-
turing multiple captions per audio sample, designed to provide
rich descriptive content for general audio understanding tasks.

• AudioCaps 2.0 [11]: A comprehensive dataset pairing audio
clips with human-written textual descriptions, providing di-
verse acoustic content across various environmental and every-
day sound scenarios.

• MusicCaps [12]: A specialized music dataset with struc-
tured annotations authored by professional musicians, ensur-
ing domain-expert quality in musical descriptions and aspect
analysis.

• LP-MusicCaps-MTT [13]: A music dataset with syntheti-
cally generated captions using large language models, employ-
ing tag-to-caption generation from MagnaTagATune dataset
tags.

• CompA-R [14]: An audio question-answering dataset synthe-
sized through a three-stage pipeline involving multimodal cap-
tion generation, instruction-response synthesis, and human ver-
ification for quality assurance.

• SpeechCraft (LibriTTS-R split) [15]: A bilingual expressive
speech dataset featuring automatic natural language descrip-
tions generated through expert classifiers and fine-tuned lan-
guage models for speech-language learning.

• TACOS [16]: A temporal audio captioning dataset providing
precise temporal localization of sound events with comprehen-
sive timing annotations including onset, offset, and duration
information.

2.2. Finetuning Split

A small portion of VocalSound [17] and VGGSound [18] datasets
is also incorporated, along with MMAU-test-mini [8] and the
DCASE [19] training set, to construct high-quality multiple-choice
questions for fine-tuning.

• VocalSound: A crowdsourced dataset containing recordings
of human vocal sounds including laughter, sighs, coughs,
throat clearing, sneezes, and sniffs.

• VGGSound: A large-scale audio-visual dataset with clips
from YouTube videos, spanning 310+ classes across challeng-
ing acoustic environments.

• MMAU-test-mini: A subset of the MMAU benchmark con-
taining curated audio clips with expert-level questions across
27 diverse tasks requiring advanced audio understanding.

• DCASE Training Set: Audio question-answering data from
DCASE 2025 challenge, including Bioacoustics QA, Temporal
Soundscapes QA, and Complex QA subsets.

3. DATASET CONSTRUCTION

DCASE-AQA-Boost is divided into two parts: Pretraining Split and
Finetuning Split. The Pretraining Split consists of general audio
question-answer pairs falling into four categories: sound, music,

speech, and a cross-cutting type called temporal. This split is de-
signed to enhance the model’s general audio question answering ca-
pabilities. The Finetuning Split is carefully constructed to be highly
co-distributed with the DCASE2025 Task 5 dataset, focusing on im-
proving the model’s performance specifically on the DCASE2025
Task5 evaluation set.

3.1. Pretraining Split

To construct the Pretraining Split of DCASE-AQA-Boost, we de-
sign a fully automated pipeline based on Qwen3-235B [20]. This
pipeline converts datasets from various audio tasks into a unified
question answering format. It consists of three key steps: Basic
QA Formation, Multiple-Choice Question Construction, and Auto-
mated Quality Gating.

Basic QA Formation. This stage converts datasets from var-
ious audio tasks into a basic QA formation. Among the data
sources used to construct the Pretraining Split (refer to 2.1), only
CompA-R contains native question-answer pairs. Other datasets,
including Clotho, AudioCaps 2.0, MusicCaps, LP-MusicCaps-
MTT, SpeechCraft, and TACOS, require conversion into the basic
QA format.

Multiple-Choice Question Construction. This stage con-
structs multiple-choice questions based on the basic question-
answer pairs. The multiple-choice questions are represented as
structured items, each consisting of: (i) a context-based question,
(ii) three incorrect distractors, (iii) one correct answer, and (iv)
question types. The question types fall into four categories: Sound-
based Questions, Music-based Questions, and Speech-based Ques-
tions, along with a cross-cutting type called Temporal Questions.
TACOS is exclusively used to generate Temporal Questions, as it
focuses on temporal sound event localization. For the remaining
datasets, flexible question generation is allowed across the three
primary types: sound, music, and speech. This design maintains
generative flexibility while ensuring diverse and balanced question
construction.

Automated Quality Gating. This stage implements automated
quality control. Qwen3-235B is used as an evaluator to assess each
item across three dimensions, using a five-point rating scale: An-
swer Consistency, Incorrect Options Quality, and Language Flu-
ency. Questions scoring below four are automatically filtered, en-
suring only high-quality sound questions remain in the final dataset.

3.2. Finetuning Split

The Finetuning Split is used to fine-tune the model in order to en-
hance its performance specifically on the DCASE2025 Task 5 eval-
uation set. A natural question arises: What data should be selected
to construct the Finetuning Split? To address this, the DCASE2025
Task 5 training set is first selected for fine-tuning. The performance
of the fine-tuned model is then evaluated on the DCASE2025 Task 5
development set, which consists of three parts: Part 1: Bioacoustics
QA, Part 2: Temporal Soundscapes QA, and Part 3: Complex QA.
The development results showed that the model performed best on
Part 1, while only achieving suboptimal results on Parts 2 and 3.

To specifically enhance performance on Part 2, a custom-built
Temporal Augmentation Set is created. Its construction involves
three steps: (i) audio event selection, (ii) audio concatenation, and
(iii) multiple-choice question generation.

Audio Event Selection. Eight audio events are selected from
VocalSound and VGGSound, all of which also appear in Part 2 of
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Table 1: Question template samples for the two categories in
the Temporal Augmentation Set: Sound Detection Questions and
Sound Sequence Questions.

Categories Question Template Samples
What is the first occurring sound in the audio?

What is the second sound in the audio clip?
Sound Detection What is the third sound in the audio clip?

What is the last occurring sound?
What is the longest sound?

What is the sequence of sounds?
What is the order of the sounds?

Sound Sequence In what order do the sounds occur?
Which sound occurs before the [sound event]?
Which sound occurs after the [sound event]?

the DCASE2025 Task5 dataset. These events are used to build the
Temporal Augmentation Set.

Audio Concatenation. Two to four audio events are randomly
selected and concatenated along the temporal dimension to form a
composite audio clip. The total duration is kept under 30 seconds,
with 0 to 1 second of silence randomly inserted before and after
each event.

Multiple-Choice Question Generation. Based on the gen-
erated composite audio and the corresponding event timestamps,
multiple-choice questions are generated using Qwen3-32B-Instruct
[20]. These questions are divided into two categories: Sound Detec-
tion Questions and Sound Sequence Questions, with 500 multiple-
choice questions generated for each category. The corresponding
question templates for each category are provided in Table 1.

To specifically enhance performance on Part 3, the MMAU-
test-mini dataset, which contains 1,000 audio-related complex
multiple-choice questions, is selected for joint fine-tuning. There-
fore, the Finetuning Split consists of three subsets: the DCASE2025
Task5 training set (8,221 items), the Temporal Augmentation Set
(1,000 items), and MMAU-test-mini (1,000 items), resulting in a
total of 10,221 multiple-choice questions.

4. TRAINING

4.1. Qwen2-Audio-R1-8B

Qwen2-Audio-R1-8B is developed based on the pretrained Qwen2-
Audio-Instruct-7B. We introduce a three-stage training paradigm
to optimize the model, aiming to enhance its overall performance
across the three evaluation tasks of DCASE2025 Task 5: Bioacous-
tics QA, Temporal Soundscapes QA, and Complex QA.

Stage 1: Supervised Fine-Tuning. In this stage, Qwen2-
Audio-R1-8B is trained using a broad range of audio question-
answering datasets to enable unified learning across diverse audio
QA tasks. The goal is to develop a model capable of handling
four categories of questions: sound-based, music-based, speech-
based, and temporal questions. To this end, we perform supervised
fine-tuning using the Pretraining Split of the DCASE-AQA-Boost
dataset within the SWIFT [21] framework.

Stage 2: Group Relative Policy Optimization. In this stage,
Qwen2-Audio-R1-8B is optimized to improve its performance
across the three components of DCASE2025 Task 5. To enhance
training stability and task adaptability, GRPO [5, 6] is applied using
the DCASE2025 Task 5 training set.

Stage 3: Group Relative Policy Optimization. This stage fur-
ther refines Qwen2-Audio-R1-8B by reinforcing its performance on
underperforming tasks while continuing to optimize across all three
components of DCASE2025 Task 5. The training is conducted
using the carefully curated Finetuning Split of the DCASE-AQA-
Boost dataset, with GRPO employed as the training strategy.

4.2. Kimi-Audio-SFT-12B

For Kimi-Audio, a streamlined two-stage fine-tuning approach is
adopted, tailored to the model’s architectural characteristics. The
training process is initiated with SFT using the pretraining dataset,
establishing fundamental audio-language understanding capabili-
ties across diverse audio domains represented in the dataset.

Subsequently, an additional SFT phase is conducted using the
Finetuning Split. This stage specifically targets temporal audio un-
derstanding and sound event localization tasks, leveraging the struc-
tured nature of the DCASE benchmark to enhance the model’s pre-
cision in temporal audio analysis and event recognition capabilities.

Table 2: Performance comparison on DCASE development set
across training stages. Results show accuracy percentages for each
model configuration.

Model Configuration Accuracy (%)
Qwen2-Audio-R1-8B

Baseline (no fine-tuning) 48.74
+ Pretrain-split SFT 54.80
+ DCASE train-split GRPO 77.17
+ Finetune-split GRPO 77.66

Kimi-Audio-SFT-12B
Baseline (no fine-tuning) 54.83
+ Pretrain-split SFT 62.08
+ Finetune-split SFT 78.18

5. EXPERIMENTAL RESULTS

The fine-tuned models are evaluated on the DCASE development
set to assess the effectiveness of the multi-stage training approach.
Table 2 presents the performance progression of both models across
different training stages, demonstrating significant improvements
through the proposed fine-tuning methodology.

To provide a more comprehensive evaluation, Table 3 presents
the breakdown of final model performance across different task cat-
egories in the DCASE development set.

The results demonstrate substantial performance gains for both
models through our fine-tuning approach. For Qwen2-Audio-
Instruct, the baseline accuracy of 48.74% improves to 77.66% af-
ter the complete three-stage training pipeline, representing a 28.92
percentage point improvement. The most significant gain occurs
during the GRPO phase with DCASE training set, where accuracy
jumps from 54.80% to 77.17%, highlighting the effectiveness of
reinforcement learning-based optimization for audio understanding
tasks.

Kimi-Audio achieves 78.18% accuracy after two-stage SFT
training, starting from a baseline of 54.83%. This represents a 23.35
percentage point improvement. Notably, Kimi-Audio achieves
slightly higher final performance (78.18% vs 77.66%) despite us-
ing a simpler training approach without GRPO, suggesting strong
compatibility between the model architecture and our dataset con-
struction methodology.
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Table 3: Accuracy (%) of Kimi-Audio-SFT-12B and Qwen2-
Audio-R1-8B on the DCASE2025 Task5 development set. Results
are presented for the three sub-tasks: Bioacoustics QA, Temporal
Soundscapes QA, and Complex QA.

Model Bio Temporal Complex
Kimi-Audio-SFT-12B 90.62 59.93 83.28
Qwen2-Audio-R1-8B 83.48 60.43 83.28

Overall Accuracy
Kimi-Audio-SFT-12B 78.18
Qwen2-Audio-R1-8B 77.66

The detailed breakdown in Table 3 reveals distinct performance
patterns across different task categories. Both models excel in
bioacoustics understanding, with Kimi-Audio-SFT-12B achieving
90.62% accuracy and Qwen2-Audio-R1-8B reaching 83.48% on the
224 bioacoustics samples. Performance on complex audio scenar-
ios is equally strong for both models, with identical accuracy of
83.28% across 1,633 complex samples.

However, temporal reasoning remains the most challenging task
category, where both models show relatively modest performance
(Kimi: 59.93%, Qwen: 60.43% over 609 temporal samples). The
gap between temporal and other task categories indicates significant
room for improvement in sequential audio event reasoning capabil-
ities.

Both models demonstrate that the initial SFT phase with
DCASE-AQA-Boost provides meaningful improvements (6.06 and
7.25 percentage points respectively), establishing the foundation for
subsequent training stages.
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