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ABSTRACT

Previous studies have shown that using large-scale audio pre-
training models for anomaly sound detection under domain shift
scenarios has demonstrated significant promise. In this year’s com-
petition, compared to last year, supplementary sets have been added.
Due to our lack of understanding in denoising, this dataset was not
utilized throughout the training process. In this technical report,
we continue to fine-tune large pre-training models, employing sub-
center arcface for training, primarily using the BEATs and EAT
models. We trained only on the current development set and ad-
ditional supplementary sets, achieving a score of 64.46% on the
development set.

Index Terms— Anomaly detection, fine-tune, sub center arc-
face

1. INTRODUCTION

Anomalous sound detection plays a critical role in industrial au-
tomation by identifying abnormal acoustic signals [1, 2, 3, 4],
thereby ensuring the continuous and stable operation of machinery.
This year’s competition introduces an additional dataset that pro-
vides either noise-free operational audio or pure noise samples for
each machine, enriching the training and evaluation conditions. The
challenge also continues to focus on anomalous sound detection un-
der scenarios with limited attribute information and cross-domain
generalization.

Under the condition of limited target domain data across dif-
ferent domains, oversampling techniques such as SMOTE[5] are
typically applied during the detection phase to enhance model ro-
bustness. For machine categories with limited attribute information,
the sub-center ArcFace[6] loss is employed during training. Com-
pared to the conventional ArcFace[7] loss, this approach adaptively
pulls different classes toward multiple centers, enabling more ro-
bust anomaly detection when partial machine attribute information
is unavailable.

2. LARGE PRE-TRAINING MODEL

2.1. BEATs

The BEATs[8] is a self-supervised audio representation learning
framework designed to capture rich semantic and contextual infor-
mation from raw audio signals. Unlike traditional CNN-based ap-
proaches, BEATs employs a Transformer-based architecture with

bidirectional context aggregation, enabling it to model long-range
temporal dependencies in audio sequences. The framework itera-
tively trains two components: an acoustic tokenizer that generates
discrete semantic tokens from audio inputs, and a Transformer en-
coder that reconstructs these tokens through masked audio model-
ing. This dual-optimization strategy enhances the model’s ability to
learn discriminative features for diverse audio tasks. For anomalous
sound detection, BEATs leverages its pre-trained weights to extract
robust frame-level embeddings, which are further refined through
domain adaptation techniques to address cross-machine variability.

2.2. EAT

The EAT[9] introduces a hybrid learning objective that combines
global utterance-level and local frame-level audio representations.
By integrating contrastive learning at both temporal granularities,
EAT achieves superior generalization across varying acoustic condi-
tions. A key innovation lies in its bootstrap-style training paradigm,
where the model alternates between generating pseudo-labels and
refining its own predictions without requiring human-annotated
data. This self-evolving mechanism ensures adaptability to un-
seen environments. In the context of anomaly detection, EAT’s
pre-trained encoder serves as a feature extractor that captures sub-
tle deviations in machine operation sounds. Its architecture priori-
tizes computational efficiency while maintaining sensitivity to rare
abnormal patterns, making it particularly suitable for industrial set-
tings with limited labeled data.

3. SUBMITTED SYSTEMS

3.1. Training Configuration

The training parameters for all systems are summarized in Ta-
ble 1. Key hyperparameters include optimizer settings, learning rate
schedules, and adaptation strategies.

We submitted four single-model systems for evaluation, each
based on a standalone pre-trained audio model without ensemble
strategies. The models are trained exclusively on the training set of
DCASE 2025 Task 2.

3.2. System Overview

The submitted systems are categorized into four configurations:
BEATs-FFT 1:The system adopts a dual-branch architecture

that combines self-supervised audio representation learning with
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Table 1: Training configuration and hyperparameters

Parameter Value

Training Mode OS-SCL
Loss Function SubCenterArcFace[6]
Margin Parameter 0.2
Sub-Center Number 114
Total Training Steps 10,000
Batch Size 16
Learning Rate 1× 10−4

Optimizer AdamW[10]
Warm-up Steps 960
Gradient Accumulation 8
Learning Rate Scheduler inverse sqrt
Data Augmentation SpecAug[11], 80
KNN Settings R: 0.2, N: 3
Temperature t = 0.04

EMA Momentum αe = 0.9995

Number of Classes 172

signal-processing-based feature extraction. The first branch is based
on the BEATs-iter3 model, a Transformer-based architecture pre-
trained on large-scale unlabeled audio data. This branch processes
the raw waveform and outputs a 128-dimensional embedding that
captures high-level semantic and contextual information from the
input audio. The second branch performs a full-segment Fast
Fourier Transform (FFT) on the audio signal, converting it into the
frequency domain. A lightweight convolutional network[12] is then
applied to extract low-level spectral features, resulting in an addi-
tional 128-dimensional feature vector.These two representations are
concatenated into a single 256-dimensional feature vector, which is
subsequently used for downstream classification.

EAT-FFT 2: The system adopts a dual-branch architecture that
combines the strengths of both self-supervised learning and signal-
processing-based feature extraction. The first branch utilizes the
EAT-base model, a Transformer-based audio representation learner
pretrained on large-scale unlabeled audio data. This branch pro-
cesses the raw waveform and outputs a 128-dimensional embed-
ding that captures high-level semantic and contextual information.
The second branch performs a full-segment Fast Fourier Transform
(FFT) on the input audio, converting it into the frequency domain.
A lightweight convolutional network is then applied to extract em-
bed, resulting in an additional 128-dimensional feature vector.These
two representations are concatenated.

EAT-BEATs 3:The system is a multi-model fusion approach
that combines two powerful self-supervised audio representations
EAT and BEATs by directly concatenating their output embed-
dings. Specifically, each input audio is independently processed by
both the EAT-base and BEATs-iter3 models, which generate 128-
dimensional embeddings capturing complementary acoustic pat-
terns from their respective pre-training objectives. These embed-
dings are then concatenated into a single 256-dimensional feature
vector, which serves as the final representation for downstream clas-
sification.

EAT-BEATs-FFT 4:The system extends the EAT-BEATs ar-
chitecture by introducing an additional signal-processing branch

based on Fast Fourier Transform (FFT). While EAT-BEATs fuses
only the embeddings from the EAT and BEATs self-supervised
models (256-dimensional total), this system further incorporates
a handcrafted spectral feature branch.Specifically, in addition to
the 128-dimensional embeddings from both EAT-base and BEATs-
iter3, a lightweight CNN processes the FFT-transformed audio
spectrogram to extract low-level frequency patterns, producing an-
other 128-dimensional feature vector. Importantly, the features ex-
tracted by the FFT branch are explicitly normalized during training.
This normalization step helps stabilize the learning process when
fusing heterogeneous feature representations.All three representa-
tions are concatenated into a final 384-dimensional embedding for
downstream classification.
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Table 2: Performance Comparison of Systems Across Machine Types
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Figure 1: Performance comparison of four systems across different machine types for AUC (Source), AUC (Target), pAUC, and Harmonic
Mean metrics.


