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ABSTRACT

This technical report presents the THUEE system for the DCASE
2025 anomalous sound detection (ASD) challenge. Motivated by
the success of self-supervised learning (SSL) and generative mod-
eling in various modalities and tasks, we build the system by first
adapting multiple SSL pre-trained models for ASD. We find that
fine-tuning the model with all six DCASE ASD datasets signifi-
cantly boosts the ASD performance. To address granularity mis-
matches in machine attributes, we adopt an adaptive prototype mod-
eling scheme. Furthermore, we leverage powerful diffusion-based
audio generation models to synthesize samples under minor work-
ing conditions, augmenting the imbalanced training set to mitigate
domain gaps between source and target distributions. Finally, we
conduct mega ensembling of dozens of single models by Bayesian
optimization, achieving substantial performance gains. The best en-
semble system reaches 74.29% on the DCASE23 dataset, 70.17%
on the DCASE24 dataset and 69.35% on the DCASE25 develop-
ment set.

Index Terms— Anomalous Sound Detection, Self-Supervised
Learning, Generative Models, Ensembling

1. INTRODUCTION

Anomalous Sound Detection (ASD) aims to detect anomalous
sound when only normal sound is provided for training. That is, the
training set contains only normal sounds while the test set contains
both normal and anomalous sounds. As an annual ASD challenge,
the DCASE 2025 ASD challenge [1, 2, 3, 4] features 15 machine
types with eight brand-new machine types. Compared with previ-
ous ASD challenges, the DCASE 2025 ASD challenge allows the
use of previous DCASE ASD challenge datasets, which addresses
one of the crucial difficulites when developing ASD systems. As
known, the top-2 systems of the DCASE 2024 challenge [5, 6] and
recent state-of-the-art (SOTA) models [7, 8, 9] conformably adopt
self-supervised learning (SSL) pre-trained models as the basis and
fine-tune them on the ASD dataset to adapt these models from the
general domain of audio to the specific domain of machinery sound.
However, due to the limited size of the ASD dataset, the fine-tuning
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task, typically attribute classification, is far too easy for SSL mod-
els pre-trained on large datasets, and thus these models can not be
well-adapted for the machinery data. Now that all six ASD datasets
can be utilized for training, the attribute classification task is much
more complex and these models can be fine-tuned for longer rounds
before over-fitting, which significantly boosts the performance.

Built upon our previous works [5, 6, 7, 10, 9], the THUEE sys-
tem is developed by three steps. First of all, we more thoroughly ex-
ploit the transfer learning capabilities of SSL models by fine-tuning
them on all six ASD datasets. We employ three top-performing
SSL models, i.e. BEATs [11], EAT [12] and a self pre-trained SSL
model, and adopt an implicit prototype modeling scheme [9] to han-
dle the mixed label granularity. Secondly, we leverage generative
models to generate samples of rare working conditions as augmen-
tation for the imbalanced training set. We first train TangoFlux [13]
and a diffusion-based model on the ASD dataset respectively, then
fine-tune BEATs on the combined dataset of both the real and gen-
erated data. Finally, we conduct mega ensembling by linearly com-
bining the anomaly scores of dozens of models, where the coeffi-
cients are optimized through Bayesian optimization.

The proposed systems are evaluated on previous ASD datasets
to have a fair comparison with SOTA systems. Our best ensemble
system achieves remarkable results of 74.29% on the DCASE23
dataset, 70.17% on the DCASE24 dataset and 69.35% on the
DCASE25 development set, which are comparable and even supe-
rior than previous SOTA systems.

The rest of the report is organized as follows. Section 2 depicts
the fine-tuning details of the SSL models. Section 3 depicts the
training process of the generative models. Section 4 introduces the
mega ensembling procedure and section 5 demonstrates the ASD
results.

2. SSL MODELS ADAPTATION

2.1. SSL Models

Three SSL models are employed in the THUEE system, namely
BEATs [11], EAT [12] and a self pre-trained SSL model. For
BEATs, we adopt the official iteration 3 checkpoint. For EAT,
we adopt the official base30 checkpoint. In contrary with BEATs
and EAT, our self pre-trained SSL model substitutes log-mel spec-
trogram with short time Fourier transform (STFT) to retain linear
frequency scale and preserve essential high frequency components
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Table 1: Performances of ensemble systems on the DCASE23, DCASE24 and DCASE25 dataset

System Generation Model DCASE23 DCASE24 DCASE25
TangoFlux Small Diff Count dev eval hmean dev eval hmean dev

23 Challenge Best [14] - 68.11 66.97 67.54 - - - -
24 Challenge Best [5] - - - - 67.82 66.24 67.02 -

THUEE System 1 15 70.03 78.15 73.87 70.25 69.07 69.66 68.96
THUEE System 2 ✓ ✓ 74 70.29 78.77 74.29 70.52 69.82 70.17 69.35
THUEE System 3 ✓ 34 70.49 78.22 74.15 70.78 69.35 70.06 68.93
THUEE System 4 ✓ ✓ 38 70.34 78.42 74.16 70.50 69.38 69.94 69.17

that are strongly associated with malfunctions, which would be di-
luted if mel-scale was adopted. After converting the waveform to
STFT spectrogram, the model splits the spectrogram with a fixed
band width and conduct masked-and-predict SSL training on these
sub-bands in a teacher student framework, where the network is
ViT-base [15]. The final utterance-level embedding is the concate-
nation of the [CLS] embeddings of all sub-bands. The model is
trained on a combined dataset of Audioset [16], Freesound1, MTG-
Jamendo [17] and Music4all [18] with a total volume of 17k hours.
Our self pre-trained model will be formally introduced in an up-
coming research paper.

2.2. Fine-tuning

The above SSL models are fine-tuned on all six DCASE ASD
datasets [19, 20, 21, 2, 3], i.e. DCASE20, DCASE21, DCASE22,
DCASE23, DCASE24 and DCASE25. It is noted that we do not uti-
lize the supplementary data of the DCASE25 dataset since adding
them deprecates the performance. The classification label is se-
lected as the combination of dataset year, machine type, section
and attributes (if available), where each unique combination is se-
lect as a new class, resulting in 1114 classes. It is noted that these
ASD datasets have shared machine types, whereas some datasets do
not provide attribute information (all of DCASE20 and some ma-
chine types of DCASE24 and DCASE25), leading to mixed label
granularity. As a solution, we adopt the adaptive prototype learn-
ing scheme proposed in our previous work [9] where we insert 16
learnable sub-centers into the embedding space for each class that
does not contain attribute information. During training, the net-
work embedding is mapped to the nearest sub-center and the corre-
sponding sub-center rather than the original embedding is utilized
for loss computation. In this way, these sub-centers act as implic-
itly learned attribute centers, and thus label granularity can be con-
formably aligned to the attribute level.

The rest of the fine-tuning details are mostly identical with
AnoPatch [7]. For BEATs, we append an attentive statistical pool-
ing layer to the ViT backbone. For EAT and our self pre-trained
model, we extract the embedding corresponding to the [CLS] to-
ken. All parameters are updated during fine-tuning since we find
that full fine-tuning is more effective than LoRA fine-tuning [8]
when the data size scales up. All models are trained for 20k steps
with warmup learning schedulers.

2.3. Anomaly Detection

The anomaly detection procedure is mainly identical to [9]. We use
k-nearest neighbor (KNN) detector (k=1) for anomaly detection,

1https://freesound.org/

where embeddings of normal samples are first extracted to form
two memory banks, one for the source domain and the other for the
target domain. The anomaly score of a query embedding is the min-
imum distance to the nearest neighbor in two memory banks. For
EAT, we employ SMOTE [22] to oversample target embeddings.
Anomaly detection is conducted for each section respectively.

3. GENERATIVE MODELS AS AUGMENTATION

Recent works [23, 24, 25] have demonstrated that generating rare
samples by diffusion-based models is effective for ASD perfor-
mance. To further exploit the ASD capabilities of SSL models,
we leverage two different generative models to augment the ASD
training set.

3.1. Fine-tuning Pre-trained TangoFlux

To augment the training set with realistic synthetic data, we employ
a fine-tuned version of the TangoFlux [13] model to generate ma-
chine audio conditioned on machine type and attribute labels. We
first construct text-audio pairs by generating captions for each audio
clip in all six DCASE ASD datasets. These captions are created us-
ing predefined textual templates that reflect both the machine type
and operational condition. The resulting text-audio pairs are then
used to fine-tune a pretrained TangoFlux model, enabling it to gen-
erate machine sounds guided by textual prompts corresponding to
target machine types and attributes.

To improve the fidelity of the generated audio, we adopt a
reference-based generation strategy. For each sample, we select
a reference audio from the original dataset and encode it into the
latent space using the model’s VAE encoder [26]. The encoded ref-
erence is then processed through a forward diffusion and reverse
denoising process, conditioned on both the text prompt and the ref-
erence embedding. This approach helps preserve realistic acoustic
features related to the target machine sound.

To ensure the quality and semantic correctness of the gener-
ated data, we apply a sample screening step. A BEATs model is
fine-tuned on the original dataset to perform attribute classification
and is used to evaluate each generated audio clip. Only samples
whose predicted attribute label matches the intended condition are
retained. This filtering process ensures that only high-quality, label-
consistent audio is added to the final training set.

3.2. Training Diffusion Models from Scratch

In addition to direct fine-tuning SSL models, we also trained a diffu-
sion model [27] from scratch to augment the original dataset. This
model directly generates log-mel spectrograms of machine audio,
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Table 2: Detailed results of ensemble systems on the DCASE25 development set

Machine Metric System 1 System 2 System 3 System 4

bearing

AUC s 65.42 68.30 66.16 67.10
AUC t 67.82 69.56 67.72 67.96
pAUC 57.16 60.58 58.74 59.42
hmean 63.12 65.90 63.96 64.59

fan

AUC s 61.66 61.24 61.12 61.60
AUC t 63.46 62.58 64.00 63.64
pAUC 55.63 55.00 56.00 56.05
hmean 60.06 59.42 60.19 60.26

gearbox

AUC s 84.20 81.88 82.38 82.92
AUC t 83.30 82.02 82.58 83.10
pAUC 68.42 68.32 67.16 69.00
hmean 77.93 76.84 76.65 77.75

slider

AUC s 91.72 92.56 92.52 92.44
AUC t 76.90 78.56 76.54 76.96
pAUC 58.84 60.26 58.11 58.53
hmean 73.35 74.76 73.02 73.35

ToyCar

AUC s 69.42 63.78 69.44 70.02
AUC t 63.56 63.78 63.40 63.28
pAUC 52.95 53.00 52.32 52.53
hmean 61.19 61.44 60.87 61.07

ToyTrain

AUC s 76.52 76.50 77.26 76.78
AUC t 70.04 68.92 69.94 69.06
pAUC 57.89 55.95 56.26 56.11
hmean 67.24 66.00 66.64 66.18

valve

AUC s 87.68 89.74 89.44 89.26
AUC t 93.42 94.34 93.88 93.84
pAUC 83.95 86.37 86.63 86.53
hmean 88.18 90.03 89.89 89.78

hmean

AUC s 75.14 75.69 75.31 75.66
AUC t 72.74 72.87 72.70 72.62
pAUC 60.79 61.27 60.65 61.05
hmean 68.96 69.35 68.93 69.17

AUC s and AUC t are the AUC of the source and target domains, respectively.

with a U-Net architecture serving as the noise prediction network.
To enable controllable data generation, the model is conditioned
on the working condition attributes, which are embedded and inte-
grated into the network. By undergoing the standard forward nois-
ing and reverse denoising processes, the model learns the data dis-
tribution for each specific class.

After training, a critical data screening process is applied to the
generated samples before they are added to the training set. For
this purpose, we first train an auxiliary Xception [28] classification
network on the original training set. This classifier is then used to
predict the class label and classification confidence for each spec-
trogram generated by the diffusion model. We selectively retain the
generated samples that satisfy two criteria: 1) the predicted class
label matches the intended class used as a condition during genera-
tion, and 2) the classification confidence is not excessively high. We
hypothesize that such samples effectively balance generation qual-
ity with data diversity, representing a valuable supplement to the
original real data by providing novel yet plausible examples. The
filtered synthetic data are then combined with the real data to fine-

tune the SSL-based ASD models.

4. MEGA ENSEMBLING

We conduct mega score ensembling for up to 74 models in sub-
mitted systems, where anomaly scores of these models are linearly
combined into an overall anomaly score. The combination coef-
ficients are obtained by Bayesian optimization which models the
mapping from coefficient to detection benchmark as a Gaussian
process. Compared with commonly adopted grid search method,
Bayesian optimization excels in finer granularity and much lower
complexity, enabling the combination of dozens of models.

The ensemble process consists of two steps. In the first step,
each model is trained under five different seeds, and we aggregate
the scores of these homogeneous models. In the second step, we ag-
gregate the scores of heterogeneous models mentioned in section 2
and section 3. System 1 is the ensemble of SSL models trained
without generated samples. System 3 is the ensemble of SSL mod-
els trained with original data and samples generated by the small
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diffusion model. System 2 and system 4 are ensembles of SSL
models trained with original data and all generated samples, with
system 2 adopting a more radical set of coefficients.

5. EXPERIMENT

The THUEE system is trained on all six ASD datasets and evalu-
ated on the DCASE25 development set. To provide a fair compar-
ison with previous SOTA models, we also report the results on the
DCASE23 dataset and the DCASE24 dataset. Table 1 depicts the
performances of four ensemble systems on three test sets, while
Table 2 presents the detailed results on the DCASE25 develop-
ment set. The best performing ensemble system, i.e. system 2,
achieves excellent scores of 74.29%, 70.17% and 69.35% on three
ASD datasets.

6. CONCLUSION

The THUEE system is developed by three steps. First of all, we
build up the basis by fine-tuning three powerful SSL models on all
six ASD datasets. Secondly, we train two generative models to gen-
erate samples of rare working conditions, which are incorporated
in the training set of these SSL models. Finally, we carry out mega
score ensembling by Bayesian optimization with two step hierarchy.
Our systems are competitive on multiple ASD datasets.
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