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ABSTRACT 

This technical report shows a fully metadata-free framework for 
unsupervised anomalous sound detection that synthesizes both 
normal and anomalous training examples. First, we generate di-
verse normal audio clips by training and adapting a pretrained 
Tango text-to-audio model: we apply LoRA and fine-tune Text 
Encoder and VAE in Tango, and full tuning UNet using three au-
tomated prompt strategies (fixed templates, spectrogram-statistic 
descriptions, and CLAP-filtered captions). Next, we create realis-
tic anomalous spectrograms by perturbing encoded normal repre-
sentations with gradient ascent and enforcing their magnitude via 
truncated projection. These synthetic normal and anomalous sam-
ples are then used to train a downstream spectrogram-based detec-
tor, yielding marked improvements in detection accuracy. In future 
work, we will close the gap between synthetic and real distribu-
tions and extend our approach to direct anomalous audio genera-
tion.  

Index Terms— Unsupervised, Anomaly Detection, 
Audio Synthesis, Gradient Ascent 

1. INTRODUCTION 

Unsupervised anomalous sound detection is critical for predictive 
maintenance in industrial settings, where genuine fault recordings 
are scarce. Conventional reconstruction-based autoencoders often 
fail to distinguish subtle anomalies, while feature-based one-class 
classifiers may lack sensitivity to near-normal faults.  
  To address these limitations, we introduce a dual-synthesis 
framework that generates diverse synthetic anomalies at both 
global and local scales. First, an encoder–decoder is trained to re-
construct normal spectrograms. Next, we apply gradient-guided 
perturbations in latent space followed by controlled projection to 
create “synthetic” anomalies that sit near the reconstruction 
boundary. Simultaneously, we produce local spectral masks using 
thresholding and Perlin-noise overlays to simulate fine-grained 
faults.  
  Training a lightweight convolutional discriminator on these en-
riched normal and synthetic samples yields more reliable anomaly 
scores, improving detection accuracy and interpretability without 
reliance on fault metadata. 

2. DATASET 

In the development dataset [1] and additional dataset [5] of 
DCASE 2025 Task2 [1], First and last few seconds of audio data 
does not impact nor improve result of the performance. This lead 
us to crop out extra audio in “discriminator stage”. However our 
text-to-audio flow does not crop out audio.  
  Every system is using STFT band size to 128, 50% hop size and 
16k sampling rate as an input data.  

3. MODEL ARCHITECTURE 

 
Figure 1: Discriminator flow 

 
Discriminator used in both first and second system is same. En-
coder is treated as backbone of the system and we’ve mixed and 
tested different type of convolution based models like resnet and 
efficientnet. In the reconstruction stage of the model we’ve used 
convolutional upscaling as gradient ascent model and for pre-
training encoder for audio data we’ve used simple 2D transpose 
for gradient descent which reconstructs normal audio.  
  Our discriminator has four different stages for optimally gener-
ating anomaly data and training discriminator.  

Normal Data Reconstruction serves two prepose of generating 
STFT of normal audio and pre-training encoder which also frozen 
in  Anomaly Discriminator stage.  

Anomaly Data Generation stage first truncated projects latent 
vector from encoded latent vector just near out side of normal la-
tent vector’s boundary and makes it robust in first show context. 
From this latent vector our gradient ascent model reconstructs 
“Anomaly Patch” or “Anomaly Region” which we overly on top 
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of the normal STFT data. This makes generating anomaly data 
more controllable.  

Both Normal Data Reconstruction and Anomaly Data Genera-
tion stage were trained on mix of SSIM Loss [6] and L1 Loss.  

Finally Anomaly Discriminator stage uses same frozen encoder 
latent vector from both normal and generated abnormal data. Then 
encoded vector goes into fully connected 4 layer model for clas-
sifying end result. This way of training model might not be opti-
mal in training stage but on the inference stage we only use en-
coder and Discriminator’s four layer FC which makes inference 
of the actual model near real-time.  
   

 
Figure 2: Text to Audio system flow 

  Our framework is based on Tango [9], a latent diffusion-based 
text-to-audio generation model. The architecture consists of four 
components: a frozen text encoder based on FLAN-T5 [11], a 
variational autoencoder (VAE) [13], a vocoder, and a latent 
diffusion model (LDM) [12], which is the only trainable 
component. All input audio clips are 10 seconds long and sampled 
at 16 kHz. These are transformed into log-mel spectrograms using 
STFT with the following parameters: n_fft = 1024, hop_length = 
128, mel_bins = 64, and a Hann window function. 
  While this structure provides a stable foundation for general-pur-
pose audio generation, it presents notable limitations in domain-
specific applications such as machine sound synthesis. The frozen 
text encoder struggles to interpret specialized terminology, and 
the VAE [13] often fails to retain fine-grained, domain-relevant 
acoustic features in its latent representation. 

To address these issues, we apply Low-Rank Adaptation (LoRA) 
[10] to both the text encoder and the VAE [13], which were orig-
inally frozen, in order to give them the capacity to adapt to ma-
chine-specific audio characteristics. Each LoRA [10] module is 

configured with a rank of 32 and a scaling factor of 8. The LDM 
[12], which operates within the diffusion process, is instead fully 
fine-tuned. 

To enhance controllability and diversity in audio generation, we 
experimented with three types of text conditions. These condi-
tions were designed under the assumption that metadata is una-
vailable, which is a common scenario in real-world machine 
sound datasets. Our goal was to explore how text prompts can be 
constructed from raw or minimally preprocessed audio. 

The first condition uses a fixed prompt template: “The normal 
condition machine sound of {machine_type}.” This approach pro-
vides a uniform semantic context across all samples but suffers 
from rigidity, making it incapable of capturing instance-level var-
iation in the data. 

The second condition involves constructing metadata-style 
prompts based on low-level acoustic features extracted from each 
spectrogram. Specifically, we compute six attributes: spectral flux, 
centroid, flatness, kurtosis, RMS energy, and zero-crossing rate. 
These values are normalized and formatted into structured, hu-
man-readable text. This approach enables the encoding of both 
continuous and categorical properties into the prompt, supporting 
the grouping of acoustically similar samples and allowing con-
trolled perturbations for data augmentation. 

The third condition leverages AudioFlamingo2 [7], a large pre-
trained audio-language model, to generate four natural language 
descriptions per audio clip. Each description is generated using a 
structured analytical prompt with max_new_tokens = 256. We 
then calculate CLAP [8] based similarity scores between the audio 
and each generated description.  Using the 630k-best.pt and 630k-
audioset-best.pt CLAP models [8], we compute the average simi-
larity score for each description and select the one with the highest 
average score, following a CLAP-based selection strategy in-
spired by Tango 2 [14]. This method provides interpretable, se-
mantically rich prompts, and if sufficient audio-text alignment is 
achieved, it has the potential to support natural language–driven 
conditional synthesis. 

4. EXPEREMENT AND RESULTS DISCUSSION 

We have trained our system on 4x Nvidia RTX3090 and 5x 
V100 at various batch size and learning rate, epoch. Results 
are all average result of 5 different seeds. 

Table 2: System results 

Machine Method Baseline Discrimina-
tor Full system 

ToyCar 
AUC (Source) 
AUC (Target) 

pAUC 

73.17 % 
53.52 % 
49.70 % 

54.54 % 
58.83 % 
54.11 % 

77.12 % 
78.03 % 
66.87 % 

ToyTrain 
AUC (Source) 
AUC (Target) 

pAUC 

61.76 % 
56.46 % 
50.19 % 

65.65 % 
61.05 % 
50.19 % 

78.25 % 
77.41 % 
68.42 % 

bearing 
AUC (Source) 
AUC (Target) 

pAUC 

66.53 % 
59.03 % 
61.86 % 

74.47 % 
64.04 % 
61.21 % 

79.00 % 
77.99 % 
69.53 % 

fan 
AUC (Source) 
AUC (Target) 

pAUC 

77.99 % 
38.75 % 
50.82 % 

72.07 % 
49.35 % 
50.47 % 

78.14 % 
76.72 % 
65.33 % 
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gearbox 
AUC (Source) 
AUC (Target) 

pAUC 

73.79 % 
51.61 % 
55.07 % 

70.14 % 
52.35 % 
64.50 % 

78.70 % 
77.89 % 
69.64 % 

slider 
AUC (Source) 
AUC (Target) 

pAUC 

73.79 % 
50.27 % 
53.61 % 

75.15 % 
51.11 % 
51.34 % 

77.94 % 
76.48 % 
64.10 % 

valve 
AUC (Source) 
AUC (Target) 

pAUC 

63.53 % 
67.18 % 
57.35 % 

74.90 % 
72.72 % 
56.42 % 

79.00 % 
78.61 % 
67.27 % 

 

5. CONCLUSION 

This tech report presents a framework that synthesizes di-
verse normal audio from text without metadata using Tango 
with LoRA and generates anomalous audio via latent gradi-
ent perturbation. The synthetic samples were used to train a 
spectrogram-based anomaly detector, effectively addressing 
the data scarcity problem in unsupervised settings and lead-
ing to improved detection accuracy.  

In future work, we will close the gap between synthetic 
and real distributions and extend our approach to direct 
anomalous audio generation from text prompts. 
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