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ABSTRACT 

This report addresses the AISTAT team’s submission to First-

Shot Unsupervised Anomalous Sound Detection task in  

DCASE2025 Task 2. Unlike the previous years’ challenges, the 

available training data spans from the training dataset of 2020 to 

2025. To effectively learn from the given data, we adopt a two-

stage training strategy consisting of pretraining followed by trans-

fer learning. During the transfer learning stage, pseudo-labeling is 

applied to data without attribute information to assign approximate 

labels and enhance model adaptation. Also, ArcFace loss and Cen-

ter loss are employed together to directly reduce class-intra vari-

ance. Additionally, to extract more informative audio representa-

tions, we leverage the multi-layer aggregation. Through these 

techniques, our single best model achieved a harmonic mean of 

66.12, while our best ensemble model achieved a harmonic mean 

of 66.78. 

 

Index Terms— Anomalous sound detection, two-

stage training, pseudo-labeling, class-intra variance, and 

multi-layer aggregation 

1. INTRODUCTION 

First-Shot Unsupervised Anomalous Sound Detection is a task in 

which only normal sound data is available for training, and the key 

objective is to effectively learn the feature distribution of the nor-

mal data. A notable characteristic of DCASE2025 Task 2 [1-4] is 

that training data from the years 2020 to 2025 can be used, while 

the evaluation is conducted exclusively on the test data from 2025. 

Also, similar to DCASE2024 Task 2 [5], a portion of the training 

data does not contain attribute information. Additionally, clean 

noise data and clean machine sound data are provided as supple-

mentary data, randomly assigned per machine. In this study, we 

trained a feature extractor by formulating the problem as a classi-

fication task, where the machine attributes were treated as class 

labels [6,7]. Once the feature extractor was trained, we used a K-

Nearest Neighbor (KNN) detector during the test phase to compute 

anomaly scores based on the distance between the test samples and 

the training set composed of normal data, thereby identifying ab-

normal instances. 

Although the available training data spans from 2020 to 2025, 

testing is restricted to 2025 data. Accordingly, we divided the 
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training procedure into two stages. In the first stage, a pretraining 

phase was conducted on the 2020-2025 data to learn general rep-

resentations of machine sounds. In the second stage, transfer learn-

ing was performed to adapt the model specifically to the 2025 data. 

For data without attribute information, we applied pseudo-labeling 

to supplement the missing labels prior to transfer learning. 

Since anomaly scores are calculated based on the distance 

from the normal training samples during the test phase, abnormal 

data must be distant from all classes of normal features. Therefore, 

the feature extractor must be trained to minimize intra-class vari-

ance while maximizing inter-class separability. To achieve this, 

we employed ArcFace loss during pretraining to encourage com-

pact intra-class representations and greater inter-class distances 

and further applied Center Loss during transfer learning to directly 

reduce intra-class variance. 

In Anomalous Sound Detection, it is crucial to extract rich 

and informative representations from audio to effectively distin-

guish between normal and abnormal sounds. To this end, we em-

ployed a multi-layer aggregation method that integrates patch em-

beddings across multiple transformer layers. Our experiments 

demonstrate that this approach yields superior performance com-

pared to using only the last-layer patch embeddings.  

The remainder of this paper is organized as follows. Section 

2 describes the proposed methods in detail. Section 3 presents the 

experimental setup, results and evaluation of our system. Finally, 

Section 4 summarizes our work. 

2. METHOD 

This section outlines the methodologies developed for the chal-

lenge. Our approach leverages a two-stage framework to learn ro-

bust and discriminative audio representations, addressing the 

challenges of diverse machine types, varying operating conditions, 

and domain shifts. The overall architecture of our system is illus-

trated in Figure 1, with subsequent subsections detailing the pre-

training and transfer learning phases, feature aggregation strate-

gies, loss functions, pseudo-labeling, and testing procedures. 

2.1. Two-stage framework 

In the pretraining phase, we utilized the entire dataset spanning 

2020 to 2025 to learn general features of machine sounds. This 

dataset includes a diverse set of machines, such as ToyCar, Fan, 

Gearbox, and others, some of which are not present in the 2025 
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data, thereby facilitating the learning of broad acoustic character-

istics across various machine types and operating conditions. To 

ensure data integrity, we removed any duplicate data across dif-

ferent years. Each unique combination of machine type and 

 
 

Figure 1: Illustration of the proposed system. Audio features are derived through layer aggregation across the outputs of all transformer 

layers in the audio encoder. These outputs are processed by attentive statistics pooling layer to produce the final embedding. During 

training, this embedding is optimized using classification-based loss functions to distinguish machine types and attribute information. In 

the testing phase, the final anomaly score is computed via K-Nearest Neighbors (KNN) between the embeddings of training and test data. 

Note that the pretraining stage employs only ArcFace loss, while the transfer learning stage additionally incorporates Center loss. 

 

attribute information (e.g., operating speed, environmental noise) 

was treated as a distinct class, aligning with our classification-

based feature learning approach. This strategy encourages the au-

dio encoder to extract discriminative features that capture the 

unique acoustic signatures of each machine attribute pair.  

However, including target domain in the pretraining phase 

would introduce severe class imbalance, as these datasets may 

contain varying distributions or fewer samples for certain ma-

chines or conditions. Such an imbalance is detrimental to our clas-

sification-based approach, as it could bias the model toward 

overrepresented classes, reducing their ability to generalize effec-

tively. To mitigate this, we excluded all the target domain data 

from the pre-training phase, focusing solely on source domain 

data from 2020 to 2025. This ensured a balanced class distribution, 

allowing the model to learn robust and generalizable features 

without being skewed by the specific characteristics of target do-

mains.  

The pre-training was conducted using the ArcFace loss func-

tion, which enhances class separability by introducing an angular 

margin in the feature space, as detailed in Section 2.4. The result-

ing pre-trained model serves as a strong foundation for captur-

ing general machine sound characteristics, which are critical for 

the subsequent transfer learning phase. 

In the transfer learning phase, we finetuned the pre-trained 

model using the entire 2025 training dataset, which includes both 

source and target domain data. Consistent with the pre-training 

phase, each combination of machine type and attribute infor-

mation was treated as a single class for classification purposes. 

This approach ensures that the model continues to leverage the 

discriminative feature space established during pretraining while 

adapting to the specific characteristics of the 2025 dataset, includ-

ing potential domain shifts. 

To enhance model performance, we explored various loss 

function combinations, incorporating the Center loss alongside 

the widely adopted ArcFace loss. The ArcFace loss maintains 

class separability, while the Center loss encourages intra-class 

compactness by pulling features toward their respective class cen-

ters, as detailed in Section 2.4. 

Additionally, for machines in the 2025 dataset lacking attrib-

ute information, we applied a pseudo-labeling strategy using the 

pretrained weights to assign temporary labels. This process, 

which involves extracting feature embeddings, visualizing them 

with UMAP, and clustering to determine pseudo-label classes, is 

elaborated in Section 2.5. The pseudo-labeled data were inte-

grated into the transfer learning phase, augmenting the training set 

and improving the model’s ability to generalize to machines with 

incomplete attribute information.  

2.2. Multi-layer aggregation 

The multi-layer aggregation strategy, first introduced in the field 

of speaker recognition [8], is a methodology that leverages the 

outputs from all layers of a transformer model to construct a com-

prehensive feature representation. In speaker recognition, this ap-

proach is employed to capture local features, such as pitch, into-

nation style, and pronunciation patterns, while simultaneously 

modeling global context to account for long-range dependencies 

inherent in variable-length speech sequences [9]. By integrating 

these diverse features, the model achieves a robust representation 

that encapsulates both fine-grained and overarching audio charac-

teristics.  

In our work, we adapted this approach, aggregating features 

from lower and higher layers to capture both local and global au-

dio characteristics. Lower layers extract fine-grained patterns, 

such as specific frequency components or short-term temporal 

variations, while higher layers encode long-term operational char-

acteristics, such as a machine’s periodic hum. To implement this, 

we concatenated the outputs of all transformer layers along the 

feature dimension, followed by a sequence of layer normalization, 

a linear layer, a GELU activation, and another linear layer. This 

process integrates multi-scale features into a unified representa-

tion, enhancing the model’s ability to handle diverse audio pat-

terns. 

By combining features sensitive to different temporal scales, 

multi-layer aggregation enhances the model’s ability to detect di-

verse anomalies, from short-term events like sudden high-



Detection and Classification of Acoustic Scenes and Events 2025  Challenge 
  

frequency noise to long-term deviations like disruptions in rhyth-

mic patterns. Additionally, this approach improves generalization 

across domains. Lower layers provide domain-invariant features, 

such as basic frequency patterns, while higher layers capture do-

main-specific information, such as environmental noise charac-

teristics. Our experiments demonstrate that multi-layer aggrega-

tion significantly enhances model performance, with particularly 

notable improvements in the target domain, where data availabil-

ity is limited.  

2.3. Attentive statistics pooling 

To effectively aggregate the sequence outputs of the audio en-

coder, we employed attentive statistics pooling, a technique 

widely used in audio processing to capture both local and global 

characteristics of variable-length sequences [10]. This method en-

hances the model’s ability to generate a fixed length representa-

tion from the transformer’s time-distributed outputs, which is crit-

ical for downstream classification and anomaly detection tasks. 

In our implementation, attentive statistics pooling was ap-

plied to the output of the transformer encoder, following the 

multi-layer aggregation step described in Section 2.2. The pooled 

representation was processed through two linear layers with a 

ReLU activation function between them, using a dropout of 0.2, 

where the intermediate dimension was set to three times the input 

dimension, and finally projected to a 768-dimensional space for 

input to the loss function. 

2.4. Loss function 

ArcFace loss, or Additive Angular Margin Loss, was first intro-

duced in face recognition and has since been widely adopted in 

various classification tasks for its ability to enhance discrimina-

tive power [11]. This loss function modifies the standard softmax 

loss by adding an angular margin, which enforces a larger angular 

distance between different classes in the feature space, thereby 

improving class separability. 

ArcFace loss is particularly effective for distinguishing be-

tween different machine types and their attributes, such as operat-

ing speeds or environmental noise conditions. By treating each 

unique combination of machine type and attribute information as 

a distinct class, the ArcFace loss ensures that the audio encoder 

learns to extract features that are highly discriminative. This is 

crucial for the DCASE2025 Task 2, where the model must gener-

alize across domains, and clear class separations in the feature 

space facilitate robust anomaly detection.  

In the transfer learning stage, we aimed to adapt the pre-

trained model to the training dataset for this year. To achieve this, 

we introduced the Center loss in conjunction with the ArcFace 

loss. Center loss is designed to learn a center for each class and to 

pull the feature vectors of the same class closer to their respective 

centers, thereby reducing intra-class variations while maintaining 

the inter-class separations enforced by ArcFace loss [12]. The 

center loss is mathematically defined as:  

𝐿𝐶 =
1

2
∑ ∥ 𝑥𝑖 − 𝑐𝑦𝑖

∥2
2

𝑚

𝑖=1

, (1)  

where 𝑚 is the number of samples in a mini-batch, 𝑥𝑖 represents 

the feature embedding of the 𝑖-th sample, 𝑐𝑦𝑖
 denotes the learna-

ble class center corresponding to the class label 𝑦𝑖, and ∥⋅∥2
2 is the 

squared L2 norm. This formulation encourages feature 

embeddings of the same class to cluster tightly around their re-

spective centers, enhancing the model’s ability to generalize to the 

target dataset. The class centers 𝑐𝑦𝑖
 are updated during training to 

reflect the evolving features distributions, complementing the an-

gular margin-based separation provided by ArcFace loss.  

During transfer learning, we explored four loss configura-

tions for transfer learning. First, we used ArcFace loss alone, as 

in pre-training, to maintain strong class separability for machine 

types and attributes. Second, following the original implementa-

tion of Center loss, we used a combination of Cross Entropy (CE) 

loss and Center loss as the loss function. Third, we combined Fo-

cal loss with Center loss. Focal loss is a loss function that ad-

dresses class imbalance by focusing on hard-to-classify examples, 

down-weighting well-classified ones [13]. Its formula is given by: 
𝐹𝐿(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)𝛾 log(𝑝𝑡) . (2) 

We set 𝛾 to 5 in all our experiments. Last, we combined ArcFace 

loss with Center loss, weighing Center loss at 0.9 and ArcFace 

loss at 0.1 to compute the final loss. The combination of a dis-

criminative loss (CE, Focal or ArcFace) with Center loss ensures 

that class separability is preserved while Center loss enhances in-

tra-class compactness by encouraging features to converge toward 

their class centers, significantly improving performance. 

 

Table 1: the number of classes after pseudo-labeling based on the 

pretrained weights. 

 

Machine EAT BEATs 

ToyTrain 4 4 

Slider 5 5 

Bearing 5 4 

AutoTrash 2 2 

Polisher 4 4 

ScrewFeeder 5 3 

ToyPet 4 3 

Total 29 25 

2.5. Pseudo-labeling 

To leverage data from machines lacking attribute information, we 

implemented a pseudo-labeling strategy to enhance model perfor-

mance. This approach assigns temporary labels to unlabeled data  

enabling their use in transfer learning. The pseudo-labeling pro-

cess begins with extracting feature embeddings from the unla-

beled machines using a pre-trained model. To analyze the struc-

ture of these embeddings, we applied Uniform Manifold Approx-

imation and Projection (UMAP) [14] to reduce their dimensional-

ity and visualize them in two dimensions. UMAP preserves both 

local and global data structures, making it effective for identifying 

clusters that may correspond to different operational conditions or 

machine states.  

Based on the UMAP visualization, we adopted a dual ap-

proach to assign pseudo-labels. For machines exhibiting distinct 

clusters in the feature space, the number of pseudo-label classes 

was determined directly by the number of observed clusters, re-

flecting natural groupings in the data. For machines with ambig-

uous or overlapping clusters, we employed agglomerative hierar-

chical clustering to generate a dendrogram, which represents the 

hierarchical structure of the data. Using a top-down approach, we 

interpreted the dendrogram and set a distance threshold between 

20 and 40 to identify candidate pseudo-label classes. This 
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threshold was chosen empirically to balance the granularity of 

clustering, ensuring meaningful and distinct class assignments. 

To address potential data imbalance, we calculated the num-

ber of samples per candidate pseudo-label class and selected the 

configuration with the least imbalance for each machine type. 

Data imbalance, where some classes have significantly more 

Model Stage Agg Loss AUC source AUC target pAUC hmean System ID 

EAT 

1 
X 

ArcFace 
68.44 66.64 56.62 63.45  

O 67.24 71.58 57.41 64.85  

2 O 

ArcFace 67.80 72.70 57.73 65.52 1 

CE + Center 69.33 72.71 58.07 66.09 2 

Focal + Center 69.41 72.74 58.07 66.12  

ArcFace + Center 68.55 73.31 57.61 65.81 3 

BEATs 

1 
X 

ArcFace 
69.70 61.94 56.06 62.07  

O 69.74 70.41 56.71 64.97  

2 O 

ArcFace 70.18 70.77 57.60 65.59 4 

CE + Center 69.84 70.83 57.62 65.52 5 

Focal + Center 70.01 70.74 57.55 65.55  

ArcFace + Center 69.90 70.92 57.95 65.66 6 

Ensemble Submission ID 

Ensemble 1 69.49 72.82 59.51 66.78 1 

Ensemble 2 69.39 72.88 59.49 66.75 2 

Ensemble 3 69.63 72.86 59.21 66.70 3 

Ensemble 4 69.61 72.80 59.25 66.70 4 

 

Table 2: Performance of single systems and ensemble systems. The best performance for each model is highlighted. Note that the system 

ID corresponds to the system index used in the ensemble described in Table 3, while the submission ID refers to the index used for the 

final submissions. 

 

samples than others, can bias model training, so this step ensures 

a balanced representation of pseudo-labels. The process was ap-

plied individually to each machine type, recognizing their unique 

acoustic characteristics and clustering behaviors. The number of 

classes resulting from pseudo-labeling is shown in Table 1.  

2.6. Testing phase 

In the testing phase, the trained audio encoder generates embed-

dings for both training and test audio samples. KNN algorithm is 

employed to compute the distances between the embeddings of 

test samples and those of normal training samples. Anomaly 

scores are derived from these distances, typically as the average 

distance to the k nearest neighbors, where larger distances indi-

cate a higher likelihood of an anomaly. We used k=1 in all our 

experiments. Also, to address the class imbalance, SMOTE was 

used to generate synthetic embeddings for the underrepresented 

normal samples in the target domain, balancing the dataset used 

for KNN-based anomaly detection. Furthermore, to account for 

variations across machines, we calculated per-machine statistics 

from the training dataset and normalized the embeddings of test 

samples using the corresponding mean and standard deviation for 

each machine. 

3. EXPERIMENT 

This section outlines the experimental setup and results. Regard-

ing the supplementary data, a distinguishing feature of this year's 

competition, we attempted a data augmentation technique using 

clean noise but could not achieve meaningful results. 

3.1. Experimental setup 

We utilized EAT [15] and BEATs [16] models for our experi-

ments. The input audio was preprocessed in the same manner as 

each model's pretraining approach. For efficient training, we ap-

plied Low-Rank Adaptation (LoRA) [17] with a rank of 64 to the 

query, value, and projection layers of both BEATs and EAT mod-

els. All systems were trained for 40 epochs, with the harmonic 

mean (hmean) of AUC source, AUC target, and pAUC on the de-

velopment test dataset monitored to select the weights from the 

epoch showing the best performance.  

When maintaining the same number of trainable parameters 

as in pretraining, we observed severe overfitting. To address this, 

we froze most model parameters and applied LoRA specifically 

to the adaptor layers used for layer aggregation. Additionally, dur-

ing the transfer learning phase, we froze the existing model pa-

rameters and updated only the LoRA parameters of the adaptor. 

However, when updating the EAT model using center loss, we 

found that setting all model parameters as learnable, without using 

adaptor LoRA, yielded better performance. 

The learning rate was updated using a cosine warmup restart 

schedule. For pretraining, the initial learning rate was set to 1e-5, 

the minimum learning rate to 1e-7, with a warmup of 1 epoch and 

restarts every 5 epoch. Weight decay was set to 0.0001, batch size 

to 32, and accumulation steps to 8. 

For transfer learning, the initial learning rate was set to 1e-7, 

the minimum learning rate to 5e-10, weight decay to 0.01, batch 

size to 16, and accumulation steps to 16. Other settings remained 

the same as in pre-training. 
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3.2. Experimental results 

Table 2 summarizes the performance of our systems. Specifically, 

the introduction of layer aggregation significantly enhanced the 

AUC performance in the target domain for both models. Notably, 

the EAT model improved its target domain AUC from 66.64 to 

71.58, while the BEATs model saw an increase from 61.94 to 

70.41. The difference in harmonic mean between the models was 

marginal. However, EAT generally outperformed BEATs in the 

target domain, while BEATs showed better performance in the 

System ID 1 2 3 4 5 6 

Ensemble 1 0.18 0 0.42 0 0.04 0.36 

Ensemble 2 0.18 0.18 0.24 0.12 0.12 0.16 

Ensemble 3 0 0.6 0 0 0.4 0 

Ensemble 4 0 0 0.6 0 0 0.4 

 

Table 3: Combination coefficients of four submitted systems 

 

source domain. The best system based on EAT and BEATs 

achieved a harmonic mean of 66.12 and 65.66 respectively.  

To determine the final submitted system, we conducted a 

grid search to explore various combinations of single systems, us-

ing the weights presented in Table 3. During this exploration, we 

observed that systems utilizing Focal loss combined with Center 

loss consistently exhibited relatively lower performance. Conse-

quently, these systems were excluded from the final submission. 

Submissions 1 and 2 were generated by identifying optimal 

weights for ensembles of multiple single systems. In contrast, 

Submissions 3 and 4 were created by performing model-level en-

sembling of systems using Center loss and a combination of 

ArcFace loss and Center loss configuration, respectively. The re-

sults of the ensemble systems for each machine are presented in 

Table 4.  

4. CONCLUSION AND FUTURE WORKS 

This paper described the AISTAT Lab’s system for first-shot un-

supervised anomalous sound detection. In response to the ex-

panded training data available compared to previous challenges, 

we adopted a two-stage training framework to maximize data uti-

lization. Additionally, we employed layer aggregation to integrate 

multi-scale audio representations, capturing both fine-grained 

acoustic patterns and long-term contextual dependencies. In the 

transfer learning phase, we enhanced the standard ArcFace loss 

with Center loss, maintaining class separability while promoting 

intra-class cohesion, resulting in notable performance gains. As 

future work, we plan to explore the integration of clean noise and 

clean machine sound data, which were not utilized in this study, 

to further enhance model robustness and performance. 
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Table 4: Detection results of four submitted systems on the development set 

 

Machine Metric Ensemble 1 Ensemble 2 Ensemble 3 Ensemble 4 

ToyCar 

AUC_s 62.52 62.84 62.48 62.48 

AUC_t 69.72 69.76 68.96 68.96 

pAUC 51.00 51.63 50.68 50.42 

hmean 60.07 60.46 59.72 59.88 

ToyTrain 

AUC_s 73.72 73.36 74.24 74.40 

AUC_t 77.08 77.12 77.36 76.96 

pAUC 60.42 60.21 61.37 61.68 

hmean 69.62 69.43 70.27 70.35 

Bearing 

AUC_s 57.20 57.28 57.44 57.52 

AUC_t 74.84 75.32 75.08 74.56 

pAUC 56.16 56.21 55.84 55.58 

hmean 61.66 61.82 61.68 61.49 

Fan 

AUC_s 62.24 62.60 62.44 62.08 

AUC_t 62.04 61.52 62.48 62.08 

pAUC 52.00 51.79 51.84 51.84 

hmean 58.35 58.21 58.47 58.25 

Gearbox 

AUC_s 68.76 68.72 70.16 70.76 

AUC_t 79.16 79.36 79.40 78.84 

pAUC 66.53 66.79 66.16 66.89 

hmean 71.08 71.22 71.49 71.83 

Slider 

AUC_s 90.32 90.32 90.48 90.36 

AUC_t 74.88 74.68 74.76 74.04 

pAUC 64.63 64.05 63.84 63.79 

hmean 75.19 74.86 74.83 74.53 

valve 

AUC_s 82.24 82.40 81.16 80.44 

AUC_t 75.40 75.20 74.88 75.80 

pAUC 71.58 71.63 70.26 70.42 

hmean 76.16 76.15 75.17 75.33 

 


