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ABSTRACT

This paper presents a multi-stage framework that integrates Uni-
versal Sound Separation (USS) and Target Sound Extraction (TSE)
for sound separation and classification. In the first stage, USS is
applied to decompose the input audio into multiple source compo-
nents. Each separated source is then individually classified to gen-
erate two types of clues: enrollment and class clues. These clues are
subsequently utilized in the second stage to guide the TSE process.
By generating multiple clues in a self-guided manner, the proposed
method enhances the performance of target sound extraction. The
final output of the TSE module is then re-classified to improve the
classification accuracy further.

Index Terms— Self-guided clue, multi-stage training, univer-
sal sound separation

1. INTRODUCTION

Sound separation and classification in environments with overlap-
ping sound sources have been actively studied in recent years. Uni-
versal Sound Separation (USS) aims to separate all types of sound
sources in an auditory scene, regardless of their class or number.
This task offers the advantage of extracting all source objects with-
out requiring prior information about their identity. In contrast,
Target Sound Extraction (TSE) focuses on isolating sound sources
aligned with specific clues, such as class labels, direction-of-arrival
(DoA), or enrollment samples. By leveraging such target-specific
clues, TSE generally achieves superior performance compared to
USS.

In DCASE 2025 Task 4, the objective is to extract foreground
sources, ranging from one to three per mixture, by removing rever-
beration and isolating them from interfering sources (up to two) and
a background noise component (always present). Each extracted
foreground source must be classified into one of 18 predefined
sound event classes. This task is particularly challenging because
it requires the selective separation of only the foreground sources
that belong to the target classes, while simultaneously suppressing
interfering sources. In the baseline framework, audio tagging (AT)
is first performed on the mixed audio to identify active classes, and
the resulting class labels are used as clues for TSE. However, the AT
model operates on a single-channel input and thus does not lever-
age spatial information when classifying source signals. This leads
to limitations in the quality of guidance. Furthermore, since only
class clues are used during training, the TSE model becomes highly
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dependent on the accuracy of the AT output, making it difficult to
recover when the predicted class clues are incorrect.

The proposed framework leverages the state-of-the-art USS
model, DeFT-Mamba, which has recently demonstrated strong per-
formance on source separation and classification tasks in poly-
phonic scenarios. In this work, waveforms separated by DeFT-
Mamba are utilized as clues to guide the TSE process. In the first
stage, USS is applied to multi-channel input, which enables the
model to exploit spatial information for improved separation and
classification. The separated audio signals are then used as enroll-
ment clues, while their corresponding classification outputs serve
as class clues for the second-stage TSE. By incorporating both en-
rollment and class clues estimated in a self-guided manner, the pro-
posed method mitigates the dependency on a single type of clue.
In cases where one clue is inaccurate, the complementary clue may
still provide effective guidance. Finally, the outputs from the TSE
process are re-classified to obtain the final predicted sound event
classes.

2. PROPOSED METHOD

The overall framework is illustrated in Figure 1. Given a mixed
audio spectrogram as input, the first-stage model, DeFT-Mamba-
USS, separates the audio into foreground object features, interfer-
ence object features, and a noise object feature. Each object fea-
ture is passed through a separation decoder and a class decoder,
allowing the model to jointly separate and classify sources with-
out pairing ambiguity. The DeFT-Mamba architecture is detailed
in [1], and to reduce model complexity, a modified version is em-
ployed in this work by removing the unfold operation and exclud-
ing the Mamba module from the F-Hybrid Mamba blocks. The
object separator of DeFT-Mamba is designed to separate three fore-
ground object features, as well as two interference source features
and one background noise feature. The separated foreground fea-
tures are subsequently decoded to object waveforms by audio de-
coders and then classified through the Masked Modeling Duo for
Single-labeled Classification (M2D-SC). Since each separated fore-
ground source is assumed to correspond to a single class, M2D-SC
is designed as a single-label classifier based on the M2D [2]. The
last two layers of the pretrained M2D model are fine-tuned to iden-
tify the individual labels of separated waveforms, just as the M2D-
AT was fine-tuned in the baseline [3]. However, the separated wave-
forms can include silence signals corresponding to non-existent ob-
jects. To classify these silence signals, energy-based learning [4]
is incorporated in the training, and the energy function is utilized
as a metric to discriminate silence signals from active foreground
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Figure 1: Overall framework of the proposed method

sources. The inference process of M2D-SC is illustrated in Fig-
ure 2. During inference, M2D-SC performs both classification over
18 classes and silence detection. The model first outputs unnor-
malized logits for the 18 classes, from which the most likely class
is determined. Then, an energy score is computed from the same
logits and compared to a threshold to decide whether the input cor-
responds to silence. We apply class-specific thresholds for silence
detection, meaning that the energy threshold varies depending on
the class predicted by M2D-SC.

Figure 2: Inference procedure of M2D-SC (a) The model predicts
class and calculates the energy score from unnormalized logits. (b)
Silence is determined by comparing the energy score with a class-
specific threshold.

The separated foreground source waveforms and their corre-
sponding M2D-SC classification outputs are then used as enroll-
ment and class clues, respectively, to guide the second-stage TSE.
The TSE module, referred to as DeFT-Mamba-TSE, also adopts the
modified DeFT-Mamba architecture. As described in [5], the enroll-
ment clues are concatenated with the mixed audio features before
being processed by the up-convolutional layers of DeFT-Mamba-
TSE. Meanwhile, the class clues are injected into each DeFT-
Mamba block via Res-FiLM conditioning, as reported in [6]. Fi-
nally, the signals extracted from the DeFT-Mamba-TSE are passed
once again through M2D-SC for classification. The TSE process is
repeated once more using the same approach. The final output of the
proposed framework consists of the separated foreground sources
and their predicted class labels, as shown in Fig.1 (e.g., separated
foreground source 3, predicted class 3).

3. EXPERIMENTAL SETTINGS

We used the training set provided in DCASE 2025 Task 4 to train
our models. To enhance generalization across diverse audio condi-
tions, we replaced the speech class subset from FSD50K with sam-
ples from the VCTK corpus and excluded the percussion class sam-
ples originating from FSD50K. A total of 50,000 training mixtures
were utilized. Audio signals were sampled at 32 kHz and converted
into spectrograms using a 40 ms Hann window and a 20 ms hop size.
The DeFT-Mamba architecture consists of six blocks, each with a
channel dimension of 64. The input channel dimension for the up-
convolution layers was set to 8 in the first stage and 14 in the second
stage. All models were trained using a learning rate of 0.0004 for
100 epochs. The DeFT-Mamba-USS, M2D-SC, and DeFT-Mamba-
TSE models were trained independently. For energy-based training
of M2D-SC, we include the silence data in the training dataset by
making 5% of the training data to exclude foreground signals. The
interference and noise signals are included in the training data with a
probability of 70% each. For training DeFT-Mamba-TSE, we used
the separated foreground sources from DeFT-Mamba-USS as en-
rollment clues, and the ground-truth class labels as class clues. For
inference, enrollment clues were generated from the DeFT-Mamba-
USS output (e.g., separated foreground source 1), and class clues
were provided by the M2D-SC predictions (e.g., predicted class 1-
1).

The loss functions and weighting strategies used for training
each module are as follows. For DeFT-Mamba-USS, the audio
decoder for the foreground signal was trained using the negative
Source-Aggregated Signal-to-Distortion Ratio (SA-SDR) loss [7].
The same loss function was used to estimate the interference sig-
nal. Given M estimated signals (ŝm) and target signals (sm), the
negative SA-SDR loss is calculated as shown in equation 1. In ac-
cordance with the challenge data configuration, M is fixed at 3 for
foreground signals and 2 for interference signals. The noise source
was trained with the negative Scale-Invariant Signal-to-Noise Ratio
(SI-SNR) loss. Since the DeFT-Mamba-USS estimates one noise
signal (n̂), the negative SI-SNR loss can be calculated as equation 2
with the target noise (n). The scaling factor α =< n̂, n > /∥n∥2
normalizes the scale of the target noise. Both non-foreground losses
were weighted with a factor of 0.01.

LSA-SDR = −10 log10

∑M
m=1∥sm∥22∑M

m=1∥sm − ŝm∥22
(1)

LSI-SNR = −10 log10
∥α · n∥2

∥n̂− α · n∥2 , α =
< n̂, n >

∥n∥2 (2)

LUSS = Lforeground + 0.01 · (Linterference + Lnoise) (3)

The class decoder within DeFT-Mamba-USS was trained using
cross-entropy (CE) loss for foreground sources. For silence seg-
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ments, outlier exposure was applied to encourage uniform class dis-
tributions, using Kullback–Leibler (KL) divergence loss. The si-
lence decision was trained as a binary classification task using bi-
nary cross-entropy (BCE) loss, and the sigmoid output was thresh-
olded at 0.5 to determine the presence of foreground signals (sig-
moid ≥ 0.5) or silence (≤ 0.5). For M2D-SC, a two-stage training
strategy was employed. In the first stage, the model was trained to
classify foreground sources using the ArcFace loss [8], which intro-
duces an additive angular margin to enhance inter-class separability.
The ArcFace loss is defined as:

LArcFace = − log
es·cos (θyi+m)

es·cos (θyi+m) +
∑

j ̸=yi
es·cos (θj)

, (4)

where θj is the angle between the input feature and the weight vec-
tor of class j, s = 32 is the scale factor, and m = 0.5 is the angular
margin. For silence segments, the same KL divergence loss used
in the DeFT-Mamba-USS class decoder was applied to ensure uni-
form probability distributions across classes. In the second stage,
energy-based learning was applied to detect silence. The energy
score is defined as:

E(x) = − log

C∑
k=1

elk (5)

where lk is the unnormalized logit for class k, and C is the number
of classes. The loss encourages inlier samples (non-silence fore-
ground samples) to have low energy, and outlier samples (silence
samples) to have high energy. To this end, the hinge-based loss
with individual margins is applied:

Lenergy = Exin∼Dtrain
in

(max (0, E(xin)−min))
2

+ Exout∼Dtrain
out

(max (0,mout − E(xout)))
2 (6)

where min = −6.0 and mout = −1.0 are the energy thresholds
for inlier and outlier samples, respectively. This hinge-based loss
function penalizes non-silence samples whose energy exceeds min,
and silence samples whose energy falls below mout. This hinge
loss for energy-based learning was weighted with a factor of 0.001.

L1st
SC = LArcFace + LKL (7)

L2nd
SC = LArcFace + LKL + 0.001 · Lenergy (8)

The target signal extractor, DeFT-Mamba-TSE, was trained using
the masked SNR loss adopted from the baseline framework [3]. In
addition, for non-foreground signals, the SI-SNR loss was applied
with a weighting factor of 0.01 to penalize non-foreground signals
underestimated from their corresponding object features.

4. RESULTS

The experimental results are summarized in Table.1. We evaluated
four configurations based on different combinations of Foreground
Source Separation (FSS) and Class Prediction (CP) available at var-
ious stages of the proposed framework. The configurations include
(1) FSS 1 + CP 1 using the separated waveforms and estimated
classes from DeFT-Mamba-USS, (2) FSS 1 + CP 1-1 using the
waveforms from DeFT-Mamba-USS but processing them by M2D-
SC to estimate classes, (3) FSS 2 + CP 1-1 performing the second
stage processing using DeFT-Mamba-TSE but using the classifica-
tion results from the first stage M2D-SC, (4) FSS 2 + CP 2 using the

waveforms separated by DeFT-Mamba-TSE and classes predicted
by feeding them into the second-stage M2D-SC, (5) FSS 3 + CP
3 two-stage TSE model. Among all configurations, the FSS 3 +
CP 3 model achieved the best performance, demonstrating the ef-
fectiveness of the proposed two-stage multi-clue framework. These
results demonstrate the effectiveness of using USS-derived outputs
as multi-clues to perform self-guided target sound extraction.

Table 1: Experimental result of the proposed framework
SNRi Accuracy CA-SNRi

FSS 1 + CP 1 15.1 dB 73.2 % 10.8 dB
FSS 1 + CP 1-1 15.1 dB 81.8 % 12.7 dB
FSS 2 + CP 1-1 18.3 dB 81.8 % 14.6 dB
FSS 2 + CP 2 18.3 dB 83.4 % 14.7 dB
FSS 3 + CP 3 18.4 dB 84.5 % 14.9 dB
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