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ABSTRACT

Anomaly Sound Detection (ASD) is crucial for predictive mainte-
nance in industrial settings, yet its performance is often severely
constrained by high-intensity, non-stationary background noise. To
address this challenge, this paper proposes a robust ASD framework
incorporating multi-source data fusion and fine-tuning. Specifically,
we fuse machine sounds recorded in factories (containing only nor-
mal samples) with easily available clean mechanical sounds or envi-
ronmental noise data. A pretrained BEATs model serves as the fea-
ture extractor. To enhance noise robustness, we innovatively intro-
duce a Blind Source Separation (BSS) decoder as an auxiliary task
atop the BEATs encoder. This guides the model in learning feature
representations that are resistant to noise interference by minimiz-
ing BSS loss. Experiments conducted on the DCASE 2025 Devel-
opment dataset demonstrate that our method significantly outper-
forms baseline approaches, achieving AUC values of 79.86% and
71.47% on ToyCar and ToyTrain, respectively. This represents rel-
ative improvements of 6.69% and 9.71% over baseline systems, un-
derscoring the efficacy of our proposed framework in acoustic event
detection and classification scenarios.

Index Terms— Anomaly detection, Pre-trained model, Blind
Source Separation, Fine-tuning

1. INTRODUCTION

Anomaly sound detection (ASD) for industrial machinery is cru-
cial for enabling predictive maintenance and avoiding significant
losses caused by equipment failures. Its primary goal is to automati-
cally identify abnormal patterns in machine operating sounds within
complex industrial acoustic environments. However, actual fac-
tory settings commonly feature high-intensity, non-stationary back-
ground noise (e.g., sounds from other equipment, human voices,
environmental sounds). This noise significantly degrades the clarity
of the target machine sound and masks subtle signs of anomalies,
presenting a major obstacle to improving the robustness and real-
world deployment capability of ASD systems.

The typical DCASE[1] ASD task setup poses significant chal-
lenges: (1) Training data contains only normal sound samples; (2)
Significant domain shift exists, meaning test data (target domain)
may come from different operating conditions, or environments
than the training data (source domain); (3) Validation/test data of-
ten consists of entirely new, unseen data types, requiring models to
possess strong generalization capabilities. Notably, recent DCASE

ASD task rules [citation specific year guidelines] allow participants
to use additional audio data collected during training.

Various methods have been proposed for ASD tasks, includ-
ing AutoEncoders based on reconstruction error[2]. These meth-
ods typically train using only normal samples. In recent years,
pre-trained audio models[3] (e.g., BEATs[4], CED[5], Unispeech
[6]) have demonstrated powerful feature representation capabilities
across various audio tasks. Applying these to ASD tasks has be-
come an important direction, with the main strategy being fine-
tuning based on the pre-trained models. For example, Jiang et
al. proposed a feature consistency-based fine-tuning method at IN-
TERSPEECH 2023 [7]. However, these mainstream fine-tuning
approaches usually follow a supervised classification framework.
They often require using additional attribute information provided
by the dataset (e.g., machine ID, operating load) as classification
targets during training[7, 8]. This reliance on detailed attribute la-
bels is a significant limitation in real industrial scenarios, as pre-
cisely obtaining and labeling this information is often costly or im-
practical. Furthermore, the robustness of existing methods under
complex noise interference still needs improvement.

To overcome the limitations of current pre-trained model-based
ASD methods regarding noise robustness and reduce reliance on
hard-to-obtain attribute labels, this paper proposes a novel fine-
tuning framework. Making full use of the additional data permitted
by DCASE rules, we combine target factory-recorded normal ma-
chine sounds with easily collected clean reference machine sounds
or environmental background noise. We artificially mix these to
generate noisy samples. Innovatively, we introduce Blind Source
Separation (BSS) as an auxiliary task to guide the fine-tuning pro-
cess of a pre-trained model (BEATs). BSS decoder aims to recon-
struct clean target machine sound features from the input mixed au-
dio features. By jointly optimizing the loss functions of the BSS
auxiliary task, the model is forced to learn deep representations that
effectively resist noise interference and focus on the essential acous-
tic characteristics of the target machine. Crucially, learning the BSS
task does not depend on any specific machine attribute labels, en-
hancing the method’s generality.

The remainder of this paper is organized as follows: Section 2
details the proposed method, including data fusion, the BSS auxil-
iary task framework, and model specifics. Section 3 describes the
experimental setup and results analysis. Section 4 concludes the
paper and outlines future work.
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Figure 1: Architecture of our system.

2. PROPOSED METHOD

2.1. Data augmentation

The DCASE 2025 Task 2 dataset[9, 10, 11] provides 1000 clips of
normal machine sounds and an additional 100 supplemental clips
per machine type. The supplemental clips consist of either clean
mechanical sounds (without background noise) or environmental
noise recorded when the machine is idle.

To leverage the supplemental data for training our supervised
BSS-based model, we artificially corrupt the supplemental clips.
Specifically, we generate noisy versions by additively mixing each
supplemental clip with randomly sampled segments of Gaussian
white noise.

This noise addition process is applied to both types of supple-
mental clips (clean machine sounds and idle environmental noise).
For each of the 100 supplemental clips, we generate 9 distinct noisy
variants, resulting in a total of 1000 augmented noisy clips

2.2. BSS-based Supervised Training

Our Anomalous Sound Detection (ASD) model is trained using a
self-supervised representation learning approach based on a Blind
Source Separation (BSS) proxy task. The core architecture con-
sists of a pre-trained encoder followed by a BSS decoder. During
the training phase, solely on normal machine audio data, the model
learns robust feature representations (embeddings) by optimizing
the BSS decoder to perform a specific task by reconstructing a clean
component of the machine sound. The embeddings produced by the
encoder serve as the input to this BSS decoder.

To leverage the generalization capabilities learned from large-
scale audio datasets, we employ the pre-trained BEATs model as
our encoder. This encoder is then fine-tuned on the normal machine
audio data alongside the BSS decoder to adapt to the specific acous-
tic characteristics and optimize its performance for the BSS proxy
task.

During the testing phase, the fine-tuned encoder extracts em-
beddings from input audio segments. A k-Nearest Neighbors
(KNN)[12] model is pre-trained on the embeddings computed from
the entire training set of normal audio. For a test sample, its embed-
ding is fed into this KNN model. The anomaly score is then derived
as the minimum Euclidean distance between the test embedding and
its nearest neighbors within the normal training embeddings.

3. EXPERIMENTS AND RESULTS

3.1. Experimental Setup

We trained the model on the development dataset and the addi-
tional training dataset. The development dataset contains recordings
from 7 machine types that are different from those in the evaluation
dataset, while the additional training dataset includes recordings
from 8 machine types that are the same as those in the evaluation
dataset. All training audio has a sampling rate of 16 kHz. Instead
of clipping audio with different lengths, we adjusted the input and
output of the network to fit their sizes.

The BSS decoder’s loss function is computed conditionally:
For supplemental data containing background noise, only the de-
velopment dataset contributes to the loss.When supplemental data
includes machine-generated audio, both development and supple-
mental data are utilized in loss computation.

To preserve temporal fidelity, the Transformer-based BEATs
encoder and BSS decoder jointly process variable length audio se-
quences without truncation or padding. Model optimization em-
ploys the AdamW algorithm with a fixed learning rate of 0.00001,
a batch size of 16, and a maximum training duration of 150 epochs.
A two stage fine-tuning approach is implemented: (1) Initial Rep-
resentation Learning (Epochs 1–50): Both encoder and decoder pa-
rameters are updated to establish task-specific feature extraction ca-
pabilities. (2) Encoder Refinement (Epochs 51–150): The BSS de-
coder is frozen while encoder parameters are further optimized to
enhance anomaly detection performance through domain-invariant
representation learning.

During inference, the fully fine-tuned BEATs encoder extracts
embeddings from the in-domain training set, which exclusively con-
tains normal operational sounds of target machine types. These em-
beddings constitute the reference database

3.2. Results

Within the development set, four machine types (ToyTrain, fan,
gearbox, and slider) exhibit supplemental data containing only
background noise. Consequently, for these machine types, only
the development dataset contributes to the loss computation. Con-
versely, for the remaining three types (ToyCar, bearing, and valve),
both development and supplemental data are incorporated into the
loss calculation. Table 1 shows the results we achieved on the de-
velopment set through the BSS-based Supervised Training.
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Table 1: :DCASE 2025 Task2 experimental results on development
dataset (%).The value in therow “Total Score” represents the har-
monic mean of the AUC and pAUC scores over all the machine
types,sections,and domains.

Metric Baseline Baseline Ours
(MSE) (MAHALA)

AUC(source) 71.05 73.17 79.86
ToyCar AUC(target) 53.52 50.91 57.6

pAUC 49.7 49.05 53.05

AUC(source) 61.76 50.87 71.47
ToyTrain AUC(target) 56.46 46.15 67.24

pAUC 50.19 48.32 55.1

AUC(source) 66.53 63.63 64.18
bearing AUC(target) 53.15 59.03 52.26

pAUC 61.12 61.86 50.78

AUC(source) 70.96 77.99 72.48
fan AUC(target) 38.75 38.56 28.82

pAUC 49.46 50.82 54.21

AUC(source) 64.8 73.26 65.3
gearbox AUC(target) 50.49 51.61 53.16

pAUC 52.49 55.07 51.78

AUC (source) 70.1 73.79 70.47
slider AUC (target) 48.77 50.27 57.44

pAUC 52.32 53.16 51.1

AUC (source) 63.52 56.22 68.84
valve AUC (target) 67.18 61 82.78

pAUC 57.35 52.23 66.99

Total Score 56.26 55.32 57.81

4. CONCLUSIONS

This paper proposes an industrial anomalous sound detection frame-
work that fuses multi-source data with a Blind Source Separation
(BSS) auxiliary task. It utilizes the pre-trained BEATs model to
extract features and enhances noise resistance through BSS loss
optimization. Experiments on the DCASE 2025 development set
demonstrate excellent performance, with the AUC values for Toy-
Car and ToyTrain reaching 79.86% and 71.47% respectively, show-
ing improvements of 6.69% and 9.71% over the baseline. The av-
erage overall score increases by 7.12%, validating the effectiveness
of the proposed method.
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