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ABSTRACT

In this work, we address the problem of single-channel sound
anomaly detection by leveraging Singular Value Decomposition
(SVD) as a feature extraction and dimensionality reduction tech-
nique. Specifically, we apply SVD across the entire dataset of spec-
trograms and retain only a limited number of dominant components
to represent the input signals in a compact latent space. We evalu-
ate two autoencoder-based models on the reduced representations.
First one is a challenge baseline autoencoder trained on the low-
dimensional features obtained from SVD. Second is transformer-
inspired autoencoder that integrates a convolution layer and an at-
tention mechanism to better capture temporal structures indicative
of anomalous behavior.

Index Terms— SVD, AE, Transformer

1. INTRODUCTION

Recently, monitoring the condition of various types of equipment
based on their emitted acoustic signals has emerged as a highly
promising area of research. In this report, we present the results
of our adapted algorithms developed to address Task 2 “First-Shot
Unsupervised Anomalous Sound Detection for Machine Condition
Monitoring” of the DCASE 2025 challenge [1]. The task involves
classifying 10-second audio recordings of different machine types
as either normal or anomalous. A key challenge lies in the fact that
the algorithms are trained solely on recordings of normal machine
sounds, while test data may originate from different domains and
contain arbitrary background noise. A detailed description of the
task [1] and the datasets [2, 3, 4] is available on the official chal-
lenge webpage.

In this report, we provide a brief overview of the algorithms we
employed and the results obtained for the proposed task. Specifi-
cally, we utilized two adapted methods based on an autoencoder and
a transformer architectures, both operating on preprocessed data ob-
tained via principal component extraction from input spectrograms.

2. METHODS

2.1. Features extraction

In the initial phase, waveforms were transformed to spectrograms
using 1024 samples Hann window and 512 samples hop using Py-
Torch implementation [5]. The phase information was discarded,
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only amplitudes were analysed. All further computations were per-
formed on natural logarithms of amplitudes. Stationary noise was
partially removed from the spectrograms by subtracting noise power
spectrum, computed for each sound clip separately. The noise spec-
trum was estimated by taking weighted average over time axis,
where the weight is inversely proportional to the signal volume in
the corresponding window.

Main features are extracted using Principal Component Analy-
sis (PCA) implemented via a truncated singular-value decomposi-
tion (SVD), also known as Karhunen-Loève Transform or Empiri-
cal Orthogonal Function (EOF) analysis. If machine only source is
provided in supplementary data, only machine sound is used for fea-
tures selection, otherwise the training data is used. The correspond-
ing spectrograms are concatenated to single matrix A along time
axis, then reduced SVD for the matrix is computed A = UDV . The
orthogonal matrix U defines mapping from newly selected features
to the frequency domain. Main features were selected to correspond
to columns of U matching 32 largest singular values; denote the ob-
tained 512 × 32 matrix U ′. Then spectrogram of every sound clip
is transformed to a feature-gram by multiplying the spectrogram by
U ′.

2.2. Models

2.2.1. Baseline autoencoder (SVD AE)

As a first step, we tested the baseline model [6] using our proposed
data representation to validate the suitability. Following the baseline
approach, five consecutive time frames of length 32 were extracted
from each transformed spectrogram. Based on this representation,
we implemented an autoencoder architecture consisting of an en-
coder with layer dimensions of 160–128–128–128–8. Each linear
layer was followed by a batch normalization layer and a ReLU ac-
tivation function. The decoder was structured symmetrically.

The total number of trainable parameters in the model is
144,568. During training, we used batches of size 256 and opti-
mized the model using the Adam optimizer with a learning rate of
0.001 and mean squared error (MSE) as the loss function. More
details on description and the original implementation can be found
in baseline model description [6] and related sources [1, 7].

The model was trained separately for each machine type, with
the objective of minimizing the reconstruction error on normal data.
For the evaluation dataset [4], the anomaly detection threshold was
selected based on the distribution of reconstruction errors in the nor-
mal data in additional training dataset [3]. For the development
dataset [2], the threshold on the reconstruction error was determined
using the receiver operating characteristic curve (ROC) by maxi-
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mizing the difference between the true positive rate and the false
positive rate.

2.2.2. Transformer-inspired autoencoder (SVD TransE)

The second model is designed to leverage temporal context for
more accurate frame prediction within a sequence of feature em-
beddings. The primary objective of this model is to reconstruct the
central frame of a temporal window based on its surrounding con-
text. Specifically, the input to the model consists of a fixed-length
sequence of 11 consecutive frames, where the central frame is in-
tentionally excluded from the input and used only as the prediction
target. The surrounding frames are then passed through a 1D con-
volutional layer, which captures short-term temporal dependencies.
This convolution is applied across the temporal axis with kernel size
of 5 and 128 output channels. A GELU activation function is ap-
plied to the convolutional outputs, followed by batch normalization.

Following the convolutional layer, the transformed frame repre-
sentations are passed through a linear layer to reduce the dimential-
ity to 16. These embeddings are then processed by a Transformer
encoder composed of 2 layers of multi-head self-attention and feed-
forward networks with a hidden dimension of 24. This component
is responsible for modeling the global dependencies across the tem-
poral sequence, allowing the model to learn rich contextual relation-
ships between the remaining frames in the input.

To reconstruct the missing central frame, the model employs a
learnable query vector for the masked central frame. This query is
used in a multi-head attention mechanism, while the output of the
Transformer encoder serves as both the key and value. Finally, the
resulting vector is passed through a linear decoder layer to upscale
it back into the original embedding space of size 32. The output is
compared to the ground-truth central frame using a mean squared
error loss.

3. RESULTS

The performance of the proposed algorithms for the DCASE 2025
Task 2 on the development dataset is presented in Table 1. For each
machine type in the test dataset, we report the values of the area un-
der the ROC-curves (AUC) for both the source and target domains
and compare them with the baseline model. Both of our proposed
methods SVD AE and SVD TransE show a clear improvement over
the baseline for the ToyTrain in the source domain. Additionally,
the SVD TransE method achieves a strong result for the valve in the
source domain, although it is inferior to the baseline model in the
target domain.
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