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ABSTRACT

This technical report presents the CP-JKU team’s system for
Task 4 Spatial Semantic Segmentation of Sound Scenes of the
DCASE 2025 Challenge. Building on the two-stage baseline of
audio tagging followed by label-conditioned source separation, we
introduce several key enhancements. We reframe the tagging stage
as a sound event detection task using five Transformers pre-trained
on AudioSet Strong, enabling temporally strong conditioning of the
separator. We further inject the Transformer’s latent representations
into a ResUNet separator initialized from AudioSep and extended
with a Dual-Path RNN. Additionally, we propose an iterative re-
finement scheme that reuses the separator’s output as input. These
improvements raise label prediction accuracy to 73.07% and CA-
SDRi to 14.49 for a single-model system on the development test
set, substantially surpassing the baseline.

Index Terms— DCASE Challenge, Audio Source Separation,
M2D, BEATs, ATST, PaSST, ASIT, ResUNet, AudioSep, time-
FiLM, Iterative Refinement

1. INTRODUCTION

Task 4 of the DCASE 2025 Challenge, called Spatial Semantic
Segmentation of Sound Scenes (S5) [1], challenges participants to
develop systems that, given a multi-channel spatial audio record-
ing, detect and isolate the dry sounds of 18 target classes. The
task’s baseline system [2] adopts a two-stage pipeline. In the first
stage, an M2D-based audio tagger [3] detects the presence or ab-
sence of target classes in the mixture clip. In the second stage, a
class-conditioned ResUNet separator [4] extracts the detected sound
sources, where the separator is conditioned via feature-wise linear
modulation (FiLM) [5].

In this report, we describe our submission to task 4, which builds
upon the baseline system with several key improvements:

• Sound Event Models of Stage 1: We distinguish between two
types of sound event models, both based on SED Transform-
ers [6]: audio taggers, trained for audio tagging using global
labels, and SED models, trained jointly for audio tagging and
sound event detection (SED) using precise onsets and offsets.
The top-performing ensemble integrates both types of models
for detecting target events in the mixture.

• Transfer Learning from AudioSep: To improve generaliza-
tion, we initialize the separation model with pretrained weights

*These authors contributed equally to this work.

from AudioSep [7], a language-conditioned sound separation
framework.

• Time-FiLM: To improve the separator’s conditioning beyond
just clip-level class labels, we incorporate a more fine-grained,
time-varying signal obtained by adding a trained SED model to
stage 2 of the training pipeline. We call this model the stage 2
SED model. Notably, the stage 2 SED model is separate from
the sound event model used in stage 1.

• Embedding Injection: We additionally inject a weighted sum
of the intermediate hidden layer representations from the stage 2
SED model directly into the embedding space of the ResUNet.

• Dual-Path RNN: To improve long-range dependency model-
ing, we incorporate a Dual-Path RNN [8] into the ResUNet’s
embedding space.

• Iterative Refinement: We adopt an iterative refinement scheme,
where previous separation outputs are fed back into the system
to progressively improve separation quality.

• Additional Training Data: We collect additional room im-
pulse responses and background noises from the FOA-MEIR
data set [9] and additionally train our final submission on the
development validation data.

A combination of our best-performing detector and separator
achieves a label prediction accuracy of 73.07% and a class-aware
signal-to-distortion ratio improvement (CA-SDRi) of 14.48 on the
development test split. Our best-performing ensemble further im-
proves these metrics, reaching 77.07% accuracy and a CA-SDRi of
15.04. These results represent a substantial improvement over the
baseline system, which achieves 59.80% accuracy and a CA-SDRi
of 11.09.

2. TASK SETTING & DATASETS

The goal of the S5 task is to detect and separate individual sound
events from multi-channel time-domain mixtures recorded in realis-
tic environments. Let

Y = [y(1), . . . , y(M)]⊤ ∈ RM×T

denote the multi-channel mixture of length T , recorded with M
microphones. Each channel y(m) is modeled as:

y(m) =

K∑
k=1

h
(m)
k ∗ sk + n(m) =

K∑
k=1

x
(m)
k + n(m),
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where K is the number of active sound sources, sk is the dry source
signal for class ck, h(m)

k is the room impulse response (RIR) from
source k to microphone m, and n(m) is the additive noise.

The objective is to recover the set of individual sources
{s1, . . . , sK}. The source count per mixture can vary from 1 to
Kmax = 3, and the number of microphones is M = 4.

2.1. DCASE2025 Task 4 Dataset

Each mixture in the development dataset is synthetically generated
from four components:

• Target sound events sk: One-shot recordings of the 18 target
classes, captured in anechoic conditions.

• Room impulse responses h(m)
k : Multichannel RIRs recorded

in real rooms.
• Environmental noise n(m): Environmental background noise.
• Interference events: Non-target sounds (i.e., not among the 18

classes).

Mixtures were synthesized at 32kHz/16bit using a modified
version of SpatialScaper [10]. Each 10-second clip contains 1–3
target events with SNRs between 5–20 dB, and up to 2 interference
events at 0–15 dB. RIRs for all sources in a mixture are drawn from
the same microphone position to ensure spatial consistency.

The training and validation sets are generated on the fly using iso-
lated audio sources and metadata, while the test set is pre-synthesized.
On-the-fly generation of the training set allows us to access event
onsets and offsets, enabling us to train Transformers for SED, as
described in Section 3.1 below. Source audio was compiled from
both newly recorded material and curated data: target sounds from
FSD50K [11] and EARS [12], RIRs and noise from FOA-MEIR [9],
and interference events from the Semantic Hearing dataset [13].

2.2. External Datasets

In addition to the provided development set, we incorporated addi-
tional RIRs and noise recordings from FOA-MEIR [9]. Specifically,
we include the three remaining RIRs from the test subset and 96
RIRs from the Reverb-S subset. Furthermore, we explore the use of
23 additional background noise recordings sourced from the same
dataset.

3. SYSTEM ARCHITECTURE

This section details the complete system architecture, as visualized
in Figure 1. Section 3.1 describes the SED Transformer architecture,
which is used in three ways: 1) as a sound event model in stage 1
to predict events contained in the mixture; 2) as feature extractor in
stage 2, injecting supplementary information into the separator’s la-
tent space; and 3) as SED model in stage 2 to generate event presence
probabilities for temporal guidance of the separator (time-FiLM).
Notably, stage 1 and stage 2 use two distinct models. Section 3.2
then explores the separator, its collaboration with the stage 2 SED
Transformer, and the iterative separation refinement.

The SED Transformers consume only the first channel of the
4-channel audio mixture (aligned with pre-training on single-channel
signals) and outputs predictions for the 18 target classes. We use
the same mechanism as the baseline system to convert the predicted
probabilities into up to Kmax one-hot encoded class predictions.
The separator is conditioned on these class predictions via FiLM [5].

3.1. SED Transformers

For SED, we start from the AudioSet Strong [14] and AudioSet
Weak [15] pre-trained Transformers introduced in [6]. Transformers
include ATST-F [16, 17], BEATs [18], fPaSST [19], M2D [20], and
ASiT [21], and their corresponding checkpoints are provided via
GitHub1.

These Transformers, denoted as a function g, take a mel spec-
trogram {xt}Tt=1 with T frames as input and produce a sequence of
embeddings {ẑt ∈ RD}St=1 of length S and dimension D:

{ẑt}St=1 = g({xt}Tt=1) (1)

The embeddings are temporally aligned to a resolution of 40 ms
(i.e., 250 frames per 10-second audio segment) by adaptive average
pooling (for S > 250) or linear interpolation (for S < 250):

{êt}250t=1 = resample
S→250

(
{ẑt}St=1

)
(2)

Frame-wise predictions for the C = 18 target classes are then
generated by a linear layer (parameterized by W ∈ RC×D and
b ∈ RC ) followed by a sigmoid activation σ:

{ô(strong)
t }250t=1 = σ

(
W{êt}250t=1 + b

)
(3)

Corresponding weak predictions ô(weak) ∈ RC are obtained by
attention-based pooling, as commonly used in SED, for example in
the DCASE 2024 baseline for Task 4 [22].

The overall loss is computed as a weighted sum of binary cross-
entropy (BCE) losses on strong and weak labels:

L = λ · 1

TC

T∑
t=1

C∑
c=1

BCE
(
ô
(strong)
t,c , y

(strong)
t,c

)
+ (1− λ) · 1

C

C∑
c=1

BCE
(
ô(weak)
c , y(weak)

c

) (4)

We either use AudioSet Weak checkpoints in combination with
λ = 0 to train audio tagger, or, we use AudioSet Strong checkpoints
in combination with λ = 0.5 to obtain models capable of also
outputting strong predictions (SED Transformers).

3.2. Separation Models

Our separation models rely on the same ResUNet architecture [4]
compared to the baseline [2], which converts waveforms to spectro-
grams, predicts and applies magnitude and phase masks, and then
converts the filtered spectrograms back into waveforms using iSTFT.
However, instead of training from scratch, we initialize ResUNet
with a pre-trained checkpoint from AudioSep [7]. We observe that
ResUNet is more compatible with these pre-trained weights than the
ResUNetK variant used in the baseline—likely because AudioSep
was trained for single-source separation. While AudioSep was orig-
inally trained with a hop size of 320, we retain the baseline’s hop
size of 160 for spectrogram computation, as it consistently yields
better performance in our experiments.

The separator consumes all channels of the 4-channel audio mix-
ture Y ∈ R4×T and computes spectrograms using STFT, resulting
in

XRN ∈ R4×FRN×TRN ,

1https://github.com/fschmid56/PretrainedSED
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Figure 1: Overview of the proposed system. The sound event model of stage 1 (red) predicts the events contained in the mixture. The stage 2
SED model (blue) calculates an event presence probability map for each class. The predicted events and the event presence probability map are
used as conditioning for the separator. Additionally, a learnable weighted average of the features of the stage 2 SED model is injected into the
separator’s latent space. During the training of the separation model, oracle targets are used instead of the predictions of stage 1.

where FRN is the number of frequency bins and TRN is the number
of time frames.

The ResUNet encoder gradually downsamples the spatial dimen-
sions (FRN and TRN) and increases the number of feature channels,
producing a latent representation

ZRN ∈ RCRN×F ′
RN×T ′

RN ,

where CRN is the number of latent channels, F ′
RN = FRN/rf , and

T ′
RN = TRN/rt. Here, rf and rt denote the frequency and time

downsampling factors, respectively.

3.2.1. Integration with Stage 2 SED Model

We inject latent representations from the stage 2 SED model into
the latent space of the ResUNet. Specifically, we compute a learned
weighted sum of the Transformer’s encoder outputs, with weights de-
termined during training, and combine it with the features extracted
by the ResUNet encoder. This approach, inspired by [23], allows
the stage 2 SED model and ResUNet to be trained together for the
separation task.

The SED Transformer consumes only the first channel of Y
(aligned with pre-training on single-channel signals) and computes a
log-mel spectrogram

XTF ∈ RFTF×TTF ,

where FTF is the number of mel bins and TTF the number of frames.
A patching mechanism is then resulting in:

Xpatch ∈ RCTF×F ′
TF×T ′

TF ,

where CTF is the Transformer dimension and F ′
TF and T ′

TF are the
number of patches along frequency and time dimension, respectively.

Input to the Transformer blocks is therefore a sequence of length
F ′

TF ∗ T ′
TF. After each Transformer block, we reshape the flattened

sequence to F ′
TF × T ′

TF and obtain a set of latent features from a
Transformer with N blocks:

{
Z

(i)
TF ∈ RCTF×F ′

TF×T ′
TF

}N

i=1

To obtain a unified representation, we learn a scalar score wi ∈
R for each block, apply softmax normalization to get weights αi,
and compute the weighted sum of the features:

αi =
exp(wi)∑N
j=1 exp(wj)

, ZTF =

N∑
i=1

αi · Z(i)
TF

We apply a linear layer to project CTF to CRN and 2D interpo-
lation over the spatial dimensions ( F ′

TF × T ′
TF → F ′

RN × T ′
RN ) to

match the shapes of ZTF and ZRN.
Finally, we combine ZTF and ZRN by element-wise addition.

3.2.2. Dual-Path RNN

To effectively model the global structure within the combined ZTF

and ZRN features, we employ a Dual-Path RNN (DPRNN) [8] mod-
ule, following its successful application in [24]. Specifically, this
DPRNN consists of a stack of two identical blocks. Each block
processes its input sequentially, first along the time axis with a
bidirectional GRU (256 hidden units), and subsequently along the
frequency axis with a second BiGRU. The resulting feature map
from the DPRNN module is then passed to the ResUNet decoder.
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3.2.3. Time-FiLM Conditioning

We introduce time-FiLM, a conditioning mechanism that extends
FiLM [5] by incorporating a temporal dimension. Instead of using
a single, global vector derived from a one-hot label, time-FiLM
leverages the time-varying event presence probabilities generated by
the stage 2 SED model. For a given target class c, its probability map
mc is selected from {ô(strong)

t }250t=1 and projected into an embedding
sequence ec ∈ R250×E by a dedicated network (FNN in Figure 1).
Analogous to FiLM, these embeddings are transformed into time-
varying scale and shift parameters. After aligning their temporal
resolution to the ResUNet feature maps via interpolation, these
parameters modulate the features channel-wise at each time step.
This allows the separator to dynamically adapt its behavior based on
the instantaneous likelihood of the target event’s presence.

3.2.4. Iterative Refinement Scheme

Our final proposal is an iterative refinement scheme for separation,
where the separated single-channel source is fed back into ResUNet
for refinement. During training, we randomly sample the number
of iterations per batch from 1 to N . Gradients are detached and not
propagated over multiple iterations. ResUNet’s input is extended to
five channels (four from the mixture + 1 from the separator source
of the previous iteration):

XRN ∈ R5×FRN×TRN ,

In Iteration 1, we input silence for the fifth channel. Interestingly,
we find that we can set N=2 during training and extend the maximum
number of iterations at inference time to up to 10. This yields small
but consistent improvements, with larger gains in the early iterations
and diminishing returns in later ones.

4. EXPERIMENTAL SETUP

4.1. SED Transformers

To ensure consistency with the pre-training phase, we resample
audio samples to 16 kHz for fine-tuning the SED Transformers [6],
matching their original audio pre-processing setup. We fine-tune
each SED Transformer for 25,000 steps using a batch size of 32 on a
single GPU. We employ a cosine learning rate schedule with 4,000
warm-up steps, along with the Adam optimizer featuring a weight
decay between 1× 10−6 and 1× 10−5. The learning rates are set
to 4 × 10−4 for M2D and BEATs, 3 × 10−4 for ASiT, 6 × 10−4

for fPaSST, and 1 × 10−4 for ATST-F. Additionally, a layer-wise
learning rate decay is applied with a factor between 0.77 and 0.9.

4.2. Separation Models

Following the baseline approach, we train our separation models
using audio samples at 32 kHz. We convert the waveforms to spec-
trograms with a window size of 2048 and a hop size of 160.

We initialize our ResUNet models with the pre-trained AudioSep
checkpoint and fine-tune them for 225,000 steps across four GPUs,
using a batch size of 4. We set the learning rate to 6× 10−4 for the
pre-trained components and 3× 10−3 for the newly initialized parts.
The training employs a cosine learning rate schedule with 12,000
warm-up steps and an Adam optimizer without weight decay.

To achieve a higher batch size along with faster training, we
trained our separation models using 16-bit floating-point precision.

ID # SED # Sep Val Label Acc ↑ CA-SDRi ↑

S1 108 10 ✓ 76.87% 14.950
S2 52 6 ✓ 77.07% 15.042
S3 1 1 ✓ 73.07% 14.486
S4 30 3 ✗ 71.73% 14.269

Table 1: Overview of the four systems submitted, with their perfor-
mance assessed on the test set. Columns # SED and # Sep denote the
number of SED Transformers and separation models in the ensem-
bles for label prediction and separation, respectively. Val indicates
whether the system was additionally trained on the validation set.
Label Acc stands for the label prediction accuracy of the SED Trans-
formers and the CA-SDRi metric represents the separation quality.

5. RESULTS

Table 1 provides an overview of the four systems we submitted to
the challenge. Systems S1, S2, and S4 utilize ensemble methods for
stage 1 and stage 2, whereas S3 employs a single M2D tagger model
paired with a single ResUNet model. The hyper-parameters for all
systems were carefully tuned using the validation set. Following
this tuning, S1, S2 and S3 were retrained on a combined dataset that
included both the training and validation sets, while S4’s ensemble
models were trained exclusively on the training set.

System S4, limited to training data alone, achieved a label predic-
tion accuracy of 71.73% and a CA-SDRi of 14.269. In comparison,
system S3, despite relying on a simpler single-model approach, sur-
passed S4 with an accuracy of 73.07% and a CA-SDRi of 14.486.
This improvement highlights the advantage of incorporating the
validation set into the training process, which likely allowed S3 to
perform better on the test set.

Systems S1 and S2, both using ensemble techniques and trained
on the combined training and validation sets, demonstrated the
strongest performance on the test set. System S1, constructed with
108 sound event models and 10 separation models—totaling 10.8
billion parameters—recorded an accuracy of 76.87% and a CA-SDRi
of 14.950. Meanwhile, system S2, derived from a carefully selected
subset of S1’s models, achieved the highest results with an accuracy
of 77.07% and a CA-SDRi of 15.042. However, S2’s performance
may not generalize as well as S1’s on the evaluation set.

6. CONCLUSION

In this technical report, we present our systems submitted to Task 4
of the DCASE 2025 Challenge, significantly enhancing the baseline
through three key contributions.

First, we incorporate models trained for Sound Event Detection
instead of relying on audio taggers only. This change enables a
more precise temporal conditioning of the separator on audio events
via time-FiLM. Second, we initialize the ResUNet with pre-trained
weights from AudioSep to speed up convergence and boost perfor-
mance. Third, we advance the separation architecture by integrating
latent representations from SED Transformers into the separator’s
latent space, followed by a Dual-Path RNN to model global time-
frequency structures. We also apply iterative refinement during train-
ing and inference to further improve results. Finally, we enhance
robustness by augmenting the training data with extra Room Impulse
Responses (RIRs) and background noise recordings. Together, these
innovations deliver significant gains in SED accuracy and separation
quality, as evidenced by our systems’ strong performance on the
challenge test set.
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