
Detection and Classification of Acoustic Scenes and Events 2025 Challenge

A HYBRID S5 SYSTEM BASED ON NEURAL BLIND SOURCE SEPARATION
Technical Report

Yuto Nozaki∗1, Shun Sakurai∗1,2, Yoshiaki Bando∗1, Kohei Saijo1,3, Keisuke Imoto1,4, Masaki Onishi1

1 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan,
2 University of Tsukuba, Ibaraki, Japan, 3 Waseda University, Tokyo, Japan,

4 Kyoto University, Kyoto, Japan
{yuto.nozaki, sakurai.shun, y.bando}@aist.go.jp

ABSTRACT

In this paper, we report our hybrid system for the DCASE 2025
Challenge Task 4 based on neural blind source separation (BSS).
This task, called spatial semantic segmentation of sound scenes
(S5), aims to detect and separate sound events from a multichannel
mixture signal. To make the separation model robust against un-
seen audio environments, we leverage neural BSS to combine ro-
bust statistical signal processing and high-performing neural model-
ing. Specifically, our network architecture incorporates the iterative
source steering algorithm to separate source signals using spatial
statistics. The network is trained via multitask learning of source
separation and classification with permutation invariant training. In
addition, to improve the performance, we utilized an audio founda-
tion model called BEATs and augmented the training data by cu-
rating AudioSet. The experimental results on the official devel-
opment test set show that our best system (System 2) improved
more than 2 dB in class-aware signal-to-distortion ratio improve-
ment (CA-SDRi) from the official baseline system.

Index Terms— Spatial semantic segmentation of sound scenes
(S5), neural blind source separation, BEATs

1. INTRODUCTION

Spatial semantic segmentation of sound scenes (S5) in DCASE
2025 Task 4 aims to detect and separate sound events from a mix-
ture signal [1]. The input is provided in the first-order Ambison-
ics (FOA) format, consisting of four channels. Each mixture may
contain up to three target sound events selected from eighteen pre-
defined classes, along with background noise and up to two inter-
ference sounds. The baseline system adopts a cascading approach
combining audio tagging and target source separation [2]. While
the separation module is trained solely on the task dataset, the tag-
ging module leverages an audio foundation model called Masked
Modeling Duo (M2D) [3]. The performance is evaluated using
class-aware signal-to-distortion ratio improvement (CA-SDRi) [1].

A key challenge in this task is making the separation model ro-
bust against unseen environments. While the train, validation, and
test data in the development set are mainly generated from the same
datasets, the eval set consists solely of new recordings by the orga-
nizers [1]. This domain shift significantly impacts performance. In
fact, the baseline system achieved 11.09 dB in CA-SDRi on the in-
domain test set but dropped to 6.60 dB on the out-of-domain eval
set. One possible solution is blind source separation (BSS) based
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Figure 1: Overview of the proposed system based on neural BSS.

on spatial statistics [4–7]. However, classic BSS methods often de-
teriorate in the underdetermined scenarios of this challenge, where
the number of sources may exceed the number of audio channels.

To address this, we employ neural BSS techniques that effec-
tively combine neural networks and statistical BSS. A representa-
tive method is called independent vector analysis with a deep neu-
ral network (DNN-IVA) [8]. This method alternates between pre-
dicting time-frequency (TF) masks by a DNN and estimating the
spatially demixing filters via IVA. This iterative process allows the
DNN to access quasi-separated signals by IVA during inference,
thereby facilitating the separation task. In addition, incorporat-
ing DNNs enables the system to be easily extended to tasks be-
yond separation (e.g., detection) by multi-task learning. The DNN-
IVA has been extended with a jointly-diagonalizable (JD) spatial
model [5,9,10] to handle diffuse noise and underdetermined condi-
tions [11]. This method has shown promising results for separating
conversational speech recordings [12].

In this report, we describe our hybrid S5 system submitted to
DCASE 2025 Task 4 (Fig. 1). Specifically, we utilized the JD-
extended version of DNN-IVA [11, 12] to address underdetermined
conditions. Our model architecture is built upon a resource-efficient
SepFormer (RE-SepFormer) [12–14]. The network is designed to
classify separated signals by attaching a classification head trained
through multitask learning. To further improve generalizability, we
incorporated two additional techniques. First, we utilized an audio
foundation model called BEATs [15]. We obtained embeddings of
BEATs for the input mixture and fed them as input features for the
RE-SepFormer. Second, we augmented the training data by curat-
ing the audio samples from AudioSet [16]. We collected more than
60K source signals of the target events by automatically filtering
the audio samples. We report the impact of each technique on CA-
SDRi for the development validation and test sets.
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2. A HYBRID S5 SYSTEM

Our system extracts N source images ŝnft ∈ CM with their
class labels ĉn ∈ {0, . . . , C} from an input M -channel mixture
xft ∈ CM in the short-time Fourier transform (STFT) domain
(Fig. 1). Here, n = 1, . . . , N , f = 1, . . . , F , and t = 1, . . . , T
denote source, frequency, and time-frame indices, respectively.
Since the number of targets in a mixture is unknown, we assign
ĉn = 1, . . . , C to target events and ĉn = 0 to silence (or noise).

2.1. Signal model based on local Gaussian model

Assuming N source tracks, our method utilizes a local Gaussian
model (LGM) [5, 7, 17]. In this model, the mixture xft is decom-
posed into N pairs of the power spectral densities λnft ∈ R+ and
spatial covariance matrices (SCMs) Hnf ∈ SM×M

+ as follows:

xft ∼ NC

(
0,

N∑
n=1

λnftHnf

)
. (1)

The SCMs Hnf are further decomposed with a diagonalizer Qf ∈
CM×M and diagonal elements gnf ∈ RM

+ as follows:

Hnf ≜ Q−1
f diag (gnf )Q

−H
f . (2)

Given the model parameters λnft, Qf , and gnf , the source image
ŝnft ∈ CM is obtained by multichannel Wiener filtering (MWF) as:

ŝnft ← Q−1
f diag

(
λnftgnf

/
N∑

n=1

λnftgnf

)
Qfxft, (3)

where ·/· denotes an element-wise division operator. Since this
model assumes (JD) full-rank SCMs, it can handle underdetermined
conditions and diffuse noise [5, 7, 10].

2.2. Network architecture based on RE-SepFormer and BEATs

The network is designed to predict the LGM parameters λ, G, and
Q and the label log-probabilities Y ≜ {ync ∈ R}N,C

n,c=1 as follows:

{λ,G,Q,Y} ← hϕ(X), (4)

where hϕ is a neural network with model parameters ϕ. This net-
work is built by alternately stacking B RE-SepFormer blocks [13]
and B − 1 iterative source steering (ISS) [4, 8] blocks. Specifi-
cally, the RE-SepFormer block is applied in a channel-wise manner
to predict

∑
n λ−1

nftg
−1
nfm as M -channel TF masks from Qfxft ∈

CM . The ISS block, on the other hand, optimizes the diagonalizer
Qf from the TF mask to maximize the likelihood of Eq. (1). After
iterating this process B − 1 times, the final (B-th) RE-SepFormer
block predicts network outputs λnft, gnfm, and ync by an M -to-N
attention mechanism followed by linear layers. The RE-SepFormer
blocks are enhanced by transform-concatenate-average (TAC) mod-
ules [14] for inter-channel communication, which was originally
proposed in [12]. In addition, we improve the separation and de-
tection performance by utilizing an audio foundation model called
BEATs [15]. The BEATs is applied to the reference (0-th) channel
of the mixture xft, and the obtained embeddings are concatenated
with Qfxft to feed the RE-SepFormer blocks.

2.3. Permutation-invariant training

The network is trained via multitask learning of source separation
and detection. Specifically, the cost function Lϕ consists of the

separation loss L(sep)
ϕ and classification loss L(cls)

ϕ as follows:

Lϕ = L(sep)
ϕ + αL(cls)

ϕ . (5)

where α ∈ R+ is a scaling hyperparameter. We utilized the SDR
loss1 on the time-domain signals of ŝnft for L(sep)

ϕ , where the time-
domain signals are obtained via inverse STFT. The SDRs are com-
puted and averaged only over source tracks with target labels (cn ̸=
0). The classification loss L(cls)

ϕ is, on the other hand, defined as the
negative cross entropy for all the source tracks. The track indices n
are aligned between estimated and reference tracks using permuta-
tion invariant training [18] to minimize Lϕ.

2.4. Dataset augmentation utilizing AudioSet

To compensate for the lack of target source signals in the challenge
datasets (including FSD50K [19] and EARS [20]), we augment the
training data using AudioSet [16]. Since AudioSet consists of web
videos, each sample often includes multiple sound events, making
it difficult to leverage as a source signal for simulated mixtures.
We first identified AudioSet clips that had only a single weak la-
bel corresponding to the target event classes in FSD50K. These
clips were then further curated using BEATs (AudioSet Fine-tuned
Model 1) [15] to ensure each contained only one event. Through
this filtering process, we obtained 64,125 clips containing only a
single sound event, which were used as additional target signals.

2.5. Inference

Once the network is trained, the source signals ŝnft are separated
by Eq. (3), and the labels ĉn are predicted as:

ĉn ← argmax
c

ync. (6)

Since each class appears at most once in the mixture, we summed
ŝnft having the same ĉn. Additionally, as each mixture has at least
one target, we applied post-processing to select the track with the
highest non-silent probability when all tracks are predicted as silent.

3. EXPERIMENTAL RESULTS

This section reports the experimental results on the development
validation and test sets of the challenge dataset.

3.1. Experimental conditions

The separation model consisted of B = 8 RE-SepFormer blocks,
each with 256-dimensional 8-head attentions and 1024-dimensional
feedforward layers. Spectrograms were obtained from 32-kHz in-
put signals using STFT with a 1024-sample window and a 320-
sample hop length. The intra-chunk processing of RE-SepFormer
was performed with 100-frame (1-second) chunks without over-
lap. The ISS blocks with two iterations were inserted between RE-
SepFormer blocks. The number of source tracks was set to N = 4,
assuming three target sources and one noise track. The noise track
is assumed to include both background and interference sounds.

The separation model was trained using the AdamW opti-
mizer [21] having a learning rate of 1.0×10−4 and weight decay of
1.0×10−5. Full 10-second clips were fed to the model during train-
ing with a batch size of 64. One epoch was defined as 1250 updates,

1We refer to the signal-to-noise ratio (SNR) as the SDR, following [1].
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Table 1: Separation and detection performance on the development set of DCASE 2025 Challenge Task 4. SDRi(K) denotes the average
SDRi for mixtures having K target sources. P ,R, and F are the micro precision, recall and F1-scores of the predicted labels.

System BEATs AS Validation set Test set
CA-SDRi Acc. CA-SDRi Acc. SDRi(1) SDRi(2) SDRi(3) P R F

Baseline (ResUNetK) [2] N/A N/A 11.28 59.26 11.09 59.80 – – – 0.84 0.80 0.82

System 1 11.74 45.56 12.38 57.13 14.53 16.43 16.89 0.87 0.76 0.81
w/o post-processing 11.50 44.07 12.26 56.00 14.53 16.43 16.89 0.89 0.75 0.81
w/o model averaging 11.23 45.56 11.85 55.47 14.09 16.23 16.47 0.85 0.75 0.80

System 2 ✓ 14.07 64.82 13.31 64.07 15.15 16.92 17.43 0.84 0.83 0.84
System 3 ✓ 10.88 42.59 11.23 48.80 14.51 16.43 16.54 0.80 0.69 0.74
System 4 ✓ ✓ 13.30 56.67 12.46 55.93 15.02 17.00 17.38 0.81 0.76 0.79
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(b) System 2
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(c) System 3
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Figure 2: Confusion matrices of detection results for the test set. <Silence> denotes the label predicted as silence (c = 0).

and training continued for up to 150 epochs. Following the base-
line system, the dynamic mixing (synthesizing) [2] was applied.
The scaling factor α was set to 1 or 2, selected based on validation
CA-SDRi for each training. To address initialization sensitivity, we
trained models with two seeds and selected the best. The final sys-
tem was obtained by averaging 10 sets of the model weights with the
highest CA-SDRi scores on the validation set. These hyperparame-
ters were experimentally determined by using the validation set.

We submitted four systems (System 1–4), differing in the use of
the BEATs and AudioSet (AS) augmentation. In addition to the CA-
SDRi and label prediction accuracy, we evaluated two additional
metrics. One was the separation performance by SDRi(K), which
is the average SDRi for mixtures having K target sources, ignoring
the predicted labels. The other is the label prediction performance
by the micro-precision (P), recall (R), and F1-scores (F).

3.2. Experimental results

As summarized in Table 1, System 2, which used BEATs but didn’t
used the AudioSet augmentation, achieved the best performance
among all the four systems. This system achieved 13.31 dB in CA-
SDRi for the test set, which was more than 2 dB better than the of-
ficial baseline system based on ResUNet. In addition, all the sys-
tems had better CA-SDRi than the baseline system, which indicates
the effectiveness of the proposed architecture based on neural BSS.
We can also see the consistent improvement of CA-SDRi by us-
ing BEATs (System 1→2 and 3→4). While the improvement of
SDRi are limited, the micro recall (R) was significantly improved.
This improvement is also shown in the confusion matrices (Fig. 2),
where the number of mistakenly predicted silence labels was sig-

nificantly reduced. The post-processing and model averaging also
slightly improved CA-SDRi. However, using AudioSet didn’t im-
proved the performance. While the SDRi was not affected by the
augmentation, it significantly degraded the prediction performance
for the VacuumCleaner as shown in Fig. 2-(b) and (d).

3.3. Limitations and future directions

We briefly outline here several limitations and future directions:

1. Training epochs: Due to the time constraints, System 3 and 4
were trained with only 108 and 105 epochs, respectively, while
System 1 and 2 were trained with 150 epochs. Therefore, care
should be taken when comparing their performance.

2. Data augmentation: We augmented only the target source sig-
nals with AudioSet, leaving the interference signals unchanged.
Along with the target augmentation, we will investigate im-
proved curation methods to better align with the original domain.

3. Modeling assumption: Our system is tailored to the challenge
conditions and assumes stationary sound sources. While this
matches the current challenge setup, handling moving sources
remains an important future direction. We plan to extend the
system using a time-varying spatial model [22–24].

4. CONCLUSION

We developed a hybrid S5 system based on neural BSS for the
DCASE 2025 Challenge Task 4. The proposed system improved
more than 2 dB in CA-SDRi from the baseline system. Our future
work includes handling moving sources and diverse audio events.
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