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ABSTRACT 

This paper presents methods for anomalous sound detection for 

DCASE2025 Task 2. The goal of this contest is to identify 

whether the sounds emitted from target machines are normal or 

anomaly. We implemented the following approaches: 1. Anoma-

ly detection using a pre-trained model directly. 2. Fine-tuning 

the DCASE general model learned in Stage1 for individual 

machines. 3. Implementing the flow of approach 2 with data 

augmentation using additional data (clean machine data or noise-

only data). 4. Performing sound source separation of operation 

sounds and noise, followed by implementing the flows of ap-

proaches 1 or 2. As a result, our approach achieved higher accu-

racy compared to the baseline method in the evaluation of the 

development dataset. 

 

Index Terms— fine-tuning, contrastive learning, data 

augmentation 

1. INTRODUCTION 

Anomalous sound detection (ASD) is an essential technology in 

machine condition monitoring. DCASE2025 Task 2 [1-3] is a 

data challenge focused on ASD. Participants, including the au-

thors, aim to detect anomalous sounds using only normal data for 

training, considering real-world applications.  

The authors' group has been working on anomaly detection in 

time-series data and improving ASD system performance, pro-

posing various methods [4-8]. We participated in this challenge 

to verify our technical level and enhance our skills. This paper 

proposes the algorithms and approaches we applied to 

DCASE2025 Task 2. 

The structure of this paper is as follows. Chapter 2 explains the 

task and data of DCASE2025 Task 2. Chapter 3 presents the 

proposed algorithms. Chapter 4 shows the evaluation results.  

Chapter 5 concludes the paper. 

2. PROBLEM DESCRIPTION 

The task of DCASE2025 Task 2 is an advanced version of 

DCASE2024 Task 2. It includes the following five requirements,  

 
 

 

with the fifth requirement newly introduced in DCASE2025 

Task 2: 

 

1. Train the model using only normal sounds (unsuper-

vised learning scenario). 

2. Detect anomalies regardless of domain shifts (domain 

generalization task). 

3. Train models for entirely new machine types. 

4. Train the model with or without attribute information. 

5. Use additional clean machine data or noise-only data 

to train the model (optional). 
 

Next, we describe the provided data. There is a development 

dataset for seven types of machines and an evaluation dataset for 

eight different types of machines. Both the development and 

evaluation datasets contain training data and test data. Each of 

the training and test datasets includes source data and target data, 

but the source/target information is concealed in the test data of 

the evaluation dataset. The training data contains only normal 

data. The test data includes both normal and anomalous data, but 

the normal/anomaly information is concealed in the test data of 

the evaluation dataset. Additionally, supplemental data is pro-

vided for each machine in both the development and evaluation 

datasets. Each machine has either clean machine data or noise-

only data. 

3. PROPOSED ALGORITHM 

We implemented the following approaches: 

 

1. Stage1: Anomaly detection using a pre-trained model 

without contrastive learning. 

2. Stage2_ssl: In addition to Stage1, feature representation 

learning through contrastive learning using samples from 

each device. 

3. Stage2_ssl_w_supplemental_data: In addition to Stage2 

_ssl, using supplemental data for data augmentation. 

4. Stage1_w_audio_separation: Performing Stage1 after 

conducting sound source separation. 

5. Stage2_ssl_w_audio_separation: Performing Stage2_ssl 

after conducting sound source separation. 
 

The flowchart without sound source separation (Stage2_ssl and 

Stage2_ssl_w_supplemental_data) is shown in Figure 1, and the 

flowchart with sound source separation (Stage2_ssl_w_audio 

_separation) is shown in Figure 2. 
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Figure 1: The flowchart without sound source separation 

 

 
 

Figure 2: The flowchart with sound source separation 

3.1. STAGE1 

We used a pre-trained model based on CED [9] directly as a 

feature extractor. CED is a Vision Transformer (ViT)-based 

architecture proposed by Dinkel et al. for audio tagging tasks. It 

demonstrates strong feature extraction capabilities through pre-

training on the large-scale AudioSet dataset. The pretrained 

model is available for download from Hugging Face. 

For preprocessing, we followed the CED method and applied 

MelSpectrogram and patching. The feature extractor was based 

on CED. 

For anomaly detection, we used the method by Wilkinghoff et 

al. [10] to handle a small number of target samples. In the fol-

lowing, we will refer to this method as Wilkinghoff's method.  

The number of samples used for k-NN rescaling, a hyperparame-

ter, was set to 16, as suggested in the paper. We optimized the k-

NN of Wilkinghoff’s method using the training data. Then, we 

calculated the anomaly scores using the test data. 

3.2. STAGE2_SSL 

In Stage2_ssl, in addition to Stage1, we performed feature repre-

sentation learning through contrastive learning using samples 

from each device (without sound source separation). 

To adapt the feature space pretrained by CED to the target task, 

we fine-tuned the model using a SimSiam [11] based framework. 
Specifically, we added two network components—a projection 

head and a prediction head, both consisting of multilayer percep-

trons (MLPs)—to the final output (embedding) of CED, and 

trained the entire extended model.  

We created two samples from one sample with different aug-

mentations and learned a feature space where these samples are 

close to each other. As a result, the trained encoder was used as 

the feature extractor.  The data augmentation variations were as 

follows: 

 

1. Gain (adjustment of gain) 

2. Polarity Inversion (inverting the audio waveform vertical-

ly; it has little effect on human hearing but is used to in-

crease data variation) 

3. Pitch Shift (shifting the pitch up or down) 

4. Time Stretch (changing the length of the audio without 

altering the pitch) 

5. Add Background Noise (adding background noise from 

the FUSS dataset) 

- Randomly superimposing noise data provided by the 

FUSS dataset [12] 

6. Add Background Noise (adding background noise from 

the additional DCASE dataset) 

- Randomly superimposing background noise data pro-

vided as supplemental data 

 

Anomaly detection was performed in the same manner as in 

Stage1. 

3.3. STAGE2_SSL_W_SUPPLEMENTAL_DATA 

In addition to Stage2_ssl, we used supplemental data for data 

augmentation. 

 

 



Detection and Classification of Acoustic Scenes and Events 2025  Challenge   

Table 1: Evaluation of the development dataset 

Method AUC_s AUC_t pAUC hmean 

Baseline[3] 
baseline_MAHALA 0.669 0.509 0.532 0.556 

baseline_MSE 0.663 0.525 0.534 0.564 

Proposed  

algorithm 

stage1 0.647 0.665 0.568 0.613 

stage1_w_audio_separation 0.636 0.645 0.571 0.603 

stage2_ssl 0.661 0.675 0.575 0.624 

stage2_ssl_w_supplemental_data 0.663 0.676 0.579 0.627 

stage2_ssl_w_audio_separation 0.630 0.636 0.565 0.596 

 

 

3.4. STAGE1_W_AUDIO_SEPARATION 

In this section, we first explain sound source separation. To 

suppress background noise in the training and test data of the 

development and evaluation datasets, we designed a sound 

source separation model. The model used Unet [13], and we 

synthesized background noise with clean machine data from 

supplemental data to learn a hard mask for the machine data. 

The synthesized background noise included noise from supple-

mental data and audioset [14] data. Figure 3 shows the results of 

sound source separation for an unseen machine type (Home-

Camera). 

We performed Stage1 using the data processed with sound 

source separation as described above. 

 

 

 

Figure 3: The results of the sound source separation process 

(HomeCamera). 

 

3.1. STAGE2_SSL_W_AUDIO_SEPARATION 

We performed Stage2_ssl using the data processed with sound 

source separation as input. 

 

 

 

4. EVALUATION 

Table 1 shows the evaluation results of the machine average in 

the development dataset. Here, hmean is the harmonic mean of 

three metrics (AUC_s, AUC_t, pAUC) and is listed as the over-

all score. None of the proposed methods (five in total) fell below 

the baseline hmean. Since the Wilkinghoff's method was intro-

duced, even Stage1, which did not perform fine-tuning of the 

feature space, exceeded the baseline performance. The method 

with the highest overall accuracy for the development dataset 

was Stage2_SSL_w_supplemental_data (contrastive learning + 

data augmentation with additional data). Although the results of 

sound source separation appear lower when averaged across 

machines, there were cases where individual machines exceeded 

Stage2_SSL_w_supplemental_data, making it difficult to draw a 

definitive conclusion. Especially, machines provided with clean 

machine data tended to have higher accuracy.  

The four submitted models are Stage1, Stage2_ssl, Stage2_ssl 

_w_supplemental_data, and Stage2_ssl_w_audio_separation. 

 

 

5. CONCLUSION 

In this paper, we introduced anomaly sound detection methods 

for DCASE2025 Task 2.  

We implemented the following approaches: First, we used a 

pre-trained CED-based model directly as a feature extractor. To 

handle a small number of target samples, we employed  

Wilkinghoff's method (Stage1). Next, we performed feature 

representation learning through contrastive learning using sam-

ples from each device (Stage2_ssl). We also used supplemental 

data for data augmentation (Stage2_ssl_w_supplemental_data). 

Furthermore, we conducted sound source separation and then 

performed the previously mentioned feature representation 

learning, Stage2_ssl (Stage2_ssl_w_audio_separation). 

In the evaluation of the development dataset, the highest over-

all accuracy was achieved when using supplemental data for data 

augmentation. However, for some machines, higher accuracy 

was obtained when sound  source separation was performed. 
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