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PERFORMANCE IMPROVEMENT OF SPATIAL SEMANTIC SEGMENTATION WITH 

ENRICHED AUDIO FEATURES AND AGENT-BASED ERROR CORRECTION FOR 

DCASE 2025 CHALLENGE TASK 4 

Technical Report 

ABSTRACT 

This technical report presents submission systems for Task 4 of 
the DCASE 2025 Challenge. This model incorporates additional 
audio features (spectral roll-off and chroma features) into the em-
bedding feature extracted from the mel-spectral feature to im-
prove the classification capabilities of an audio-tagging model in 
the spatial semantic segmentation of sound scenes (S5) system. 
This approach is motivated by the fact that mixed audio often con-
tains subtle cues that are difficult to capture with mel-spectro-

grams alone. Thus, these additional features offer alternative per-
spectives for the model. Second, an agent-based label correction 
system is applied to the outputs processed by the S5 system. This 
system reduces false positives, improving the final class-aware 
signal-to-distortion ratio improvement (CA-SDRi) metric. Finally, 
we refine the training dataset to enhance the classification accu-
racy of low-performing classes by removing irrelevant samples 
and incorporating external data. That is, audio mixtures are gen-
erated from a limited number of data points; thus, even a small 

number of out-of-class data points could degrade model perfor-
mance. The experiments demonstrate that the submitted systems 
employing these approaches relatively improve CA-SDRi by up 
to 14.7% compared to the baseline of DCASE 2025 Challenge 
Task 4. 

Index Terms–Audio tagging, source separation, spectral 
roll-off, chroma feature, agent-based label correction, dataset re-
finement 

1. INTRODUCTION 

The objective of spatial semantic segmentation of sound scenes 
(S5) is to jointly detect and separate multiple sound events from 
multichannel mixes [1][2]. This complex task requires a system 
to identify active sound classes (audio tagging) and to isolate their 
corresponding anechoic source signals accurately. The dual nature 
of this task presents significant challenges because optimal per-
formance demands a model that can interpret the coarse semantic 

content for tagging and the fine-grained spectro-temporal details 

for separation. 
A typical model often relies on a single feature representa-

tion, such as the mel-spectrogram, which can struggle to capture 
the diverse acoustic cues required for robust performance across 
all event classes. The performance of such a system highly de-
pends on the training data quality. However, the challenge dataset 
is synthesized from a finite dataset of source recordings [3]. 
Hence, the model is apt to be sensitive to out-of-class or percep-

tually ambiguous samples, which can degrade the overall accu-
racy. 

This work presents several systems submitted for Task 4 of 
the DCASE 2025 Challenge, incorporating three critical enhance-
ments to address the challenges mentioned above. First, additional 
audio features, including spectral roll-off [4] and chroma [5], are 
incorporated into the embedding feature extracted from the mel-
spectral feature to provide alternative perspectives on the audio 
that complement the mel-spectrogram. Second, to improve the fi-

nal class-aware signal-to-distortion ratio improvement (CA-SDRi) 
[1][2] metric by identifying and rectifying false-positive (FP) pre-
dictions, an agent-based label correction system is proposed as a 
post-processor applied to the outputs of the tagging and separation 
modules. Finally, a meticulous dataset refinement strategy is per-
formed to remove problematic samples and expand low-resource 
classes with external data by auditing the provided source data. 

Following this introduction, Section 2 describes the dataset 

and data refinement process. Next, Section 3 details the proposed 
system architecture and agent-based correction system. Then, 
Section 4 presents the experimental setup and results. Finally, 
Section 5 concludes this report. 

2. DATASET 

This work for the DCASE 2025 Challenge Task 4 is based on the 
provided development dataset, synthesized from various sources 
using the SpatialScaper toolkit [6]. This section outlines the com-
position of the official dataset and the specific data curation and 
augmentation steps to improve the performance of the model. 

2.1. Official dataset composition 
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This challenge provided distinct datasets for synthesizing the final 
audio mixes: 
⚫ Sound sources: The primary source for the 18 event classes 

was the Anechoic Sound Event 1K dataset, supplemented 
with sounds from Freesound Dataset 50k (FSD50K) [7] and 
Expressive Anechoic Recordings of Speech (EARS) [8]. 

⚫ Room impulse responses: Spatial characteristics were intro-
duced using the provided room impulse response datasets, 
including new recordings from NTT and the First-Order 

Ambisonics Room Impulse Response (FOA-MEIR) dataset 
[9]. 

⚫ Background interference: Various noise sources were des-
ignated to create realistic soundscapes, including audio 
from the FOA-MEIR, FSD50K, ESC-50 [10], and DISCO 
[11] datasets. 

All audio mixes of 10 seconds long each were generated at a 
sampling rate of 32 kHz. The number of active sound events in 

each mix ranged from one to three, with the signal-to-noise ratio 
of each event varying between 5 and 20 dB. 

2.2. Data refinement and augmentation 

During development, some samples in the sound source dataset 
hindered training performance; thus, a two-stage data refinement 
strategy was implemented. First, based on the observation that 
event durations shorter than 1.5 s adversely degraded classifica-
tion performance, these short samples were excluded from the 

training set. Second, all sound event samples were manually ex-
amined, removing perceptually heterogeneous samples that did 
not align with the acoustic characteristics of their respective clas-
ses. 

Although this refining process was generally beneficial, it 
led to a notable performance degradation for some specific classes, 
such as the ‘Doorbell’ and ‘MusicalKeyboard’ classes. These 
classes were already challenging due to their small amount of 

samples and similar harmonic and tonal content, making them 
prone to confusion. While the data refinement reduced intraclass 
confusion, it worsened this specific interclass accuracy. To miti-
gate this phenomenon, the training dataset was supplemented with 
targeted samples from AudioSet [12]. Table 1 summarizes the dis-
tribution of the training samples for each source class after the 
refinement and augmentation processes. 

3. PROPOSED METHOD 

In this work, the proposed model is based on the baseline model 
[10] of DCASE 2025 Challenge Task 4, Masked modeling duo 
audio-tagging (M2D-AT) and ResUNetK for audio-tagging and 

source separation, respectively. Our approach attempts to enhance 
audio-tagging performance by incorporating various audio fea-
tures and applying an agent-based label correction system to re-
duce class confusion and FP predictions, respectively.  

3.1. Spectral roll-off 

First of all, we utilize the spectral roll-off feature as an auxiliary 
input to enhance the ability of the model to distinguish between 
sound events. The spectral roll-off feature represents the fre-
quency below which a certain percentage of the total spectral en-

ergy is contained [4]. This feature captures the distribution of en-
ergy across frequencies, providing information about the sharp-
ness or brightness of a sound. For example, impulsive classes, 
such as ‘Clapping’ or ‘Percussion’, tend to have a high roll-off 
point due to strong high-frequency components, whereas back-
ground noises often display lower roll-off characteristics. 

By incorporating spectral roll-off, this work aims to provide 
the model with additional cues for detecting high-frequency tran-

sients and differentiating them from continuous or low-frequency 
sounds. The roll-off feature is extracted framewise and processed 
via multiple linear layers. The feature is concatenated with the 
M2D embedding feature [13], resulting in a richer input represen-
tation for training the audio-tagging model. 

Table 1: Summarization of the distribution of the training samples 
after refinement and augmentation 

Class 
Original 

count 
Duration 

≥ 1.5 
Heteroge-

neous data 
Added 

count 
Final 

count 

Alarm clock 102 2 37 - 63 
Bicycle bell 230 10 22 - 198 
Blender 141 0 2 - 139 
Buzzer 181 0 0 - 181 
Clapping 482 195 67 - 220 
Cough 443 0 8 - 435 
Cupboard open/close 413 32 25 - 356 
Dishes 399 99 61 - 239 
Doorbell 75 4 24 51 98 
Footsteps 388 53 16 - 319 
Hair dryer 25 0 2 - 21 
Mechanical fans 126 0 0 - 126 
Musical keyboard 503 41 35 10 437 
Percussion 2063 858 213 - 992 
Pour 93 1 3 - 89 
Speech 1211 511 68 - 632 
Typing 436 28 8 - 400 
Vacuum cleaner 66 0 0 - 66 

  
Figure 1: Visualization of audio features used in the proposed sys-

tem applied to (a) an audio mixture with ‘Doorbell’ and ‘Musi-
calKeyboard’; (b) mel-spectrogram, (c) spectral roll-off, and (d) 
chroma features.  
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3.2. Chroma feature 

Second, we try to further enrich the input representation by con-

catenating the framewise chroma feature with the M2D embed-
ding feature. The chroma feature represents the energy distribu-
tion across the 12 pitch classes of the musical octave, making the 
classes invariant to the absolute frequency [5].  
Thus, the proposed audio-tagging model can capture the harmonic 
and tonal characteristics of audio signals with the help of the 
chroma feature. In other words, tonal events (e.g., ‘AlarmClock’) 
can be separable from atonal noise (e.g., ‘HairDryer’). Further-

more, it is expected that spectrally similar tonal sounds, such as 
‘Doorbell’ and ‘MusicalKeyboard’, should be differentiable from 
each other due their different harmonic characteristics that are 
modeled by the chroma feature. 

Fig. 1 illustrates each feature applied to a mixture wave (Fig. 
1(a)) that is excerpted from a training dataset, composed of ‘Door-
bell’ and ‘MusicalKeyboard,’ As shown in Fig. 1(a), it is difficult 
to differentiate two events from mel-spectrogram. However, as 
shown in Fig. 1(c), the spectral roll-off for ‘Doorbell’ has higher 

frequency than that of ‘MusicalKeyboard’, which enables us to 
differentiate them. Moreover, the two events have different pitch 
bands, as shown in Fig. 1(d). 

3.3. Agent-based label correction 

Finally, we propose an agent-based label correction system that 
operates as a post-processing step after source separation, refining 
the output of the primary tagging model. The proposed label cor-
rection agent takes an estimated source audio and its correspond-

ing audio-tag (Label-1) as input to assess consistency. The esti-
mated source audio is then classified again using the audio-tag-
ging model to get Label-2. If the Label-2 is different from the 
Lable-1, this tag is removed for the CA-SDRi computation. 

Although this correction step is crucial for improving the 
CA-SDRi metric by reducing FPs, it can also cause an undesirable 
decrease in the true-positive rate (recall). To this end, the audio-
tagging model is modified so that it provides more than three 

events if their sigmoid scores are higher than a pre-defined thresh-
old, as shown in the top arm of Fig. 2, where {A, B, C} is a set of 
top-3 predicted labels from audio-tagging model and {D} is addi-
tional labels above the threshold. Then, each of them is classified 
using the audio-tagging model, and re-ranked according to the sig-
moid scores, as shown in the bottom arm of Fig. 2, where {A, B, 

D} is re-ranked from {A, B, C}. Finally, three events are taken 
and then the source separation is carried out again using the new 
set of event labels.  

3.4. Model selection metric 

3.4.1.  Uncorrelated metric challenges 

The official evaluation criteria for this task present a challenge for 
model selection. The audio-tagging model is evaluated on the set-
based tagging accuracy, whereas the separation model is evalu-
ated on CA-SDRi. The experiments revealed a weak correlation 

between these two metrics, making it difficult to determine which 
tagging model would produce the best separation results. Thus, 
two supplementary accuracy metrics are designed in this work to 
create a more holistic evaluation framework. 

3.4.2. Macro-averaged accuracy 

The limitation of the conventional set-based accuracy is its inabil-
ity to account for partially correct predictions. To address this 
problem, we employ a macro-averaged accuracy, which calcu-

lates accuracy on a per-label basis rather than a per-set basis. For 
example, if a model correctly identifies two out of three ground-
truth labels, we set its score as 66.7%, while the set-based accu-
racy is 0%. Consequently, the macro-average accuracy can offer 
a more granular measure of performance than the set-based accu-
racy. 

3.4.3. False-positive penalized accuracy 

The CA-SDRi metric is extremely sensitive to FPs from the audio-

tagging model. Thus, we develop an FP-penalized accuracy by in-
corporating a penalty for FPs directly into the accuracy score to 
better address this problem. This metric is defined as the number 
of correctly predicted labels divided by the total number of unique 
labels in the union of the prediction and ground-truth sets, such as 
 

𝐹𝑃 𝑃𝑎𝑛𝑒𝑙𝑖𝑧𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
.   (1) 

 
For instance, given a ground truth of {A, B, C} and a prediction 

of {A, D, E}, the score is 
1

1+2+2
= 20%. This metric allows the 

selection of models for audio-tagging to be accurate and less 
prone to generating FPs. 

 
Figure 2: Illustration of agent-based label correction scenario, 
where {A, B, D} is a set of ground truth labels. 

 
Figure 3: Block diagram of proposed model architectures, where 
the baseline system corresponds to (a), the spectral roll-off system 
is constructed using (a) and (b), and the chroma system is con-
structed using (a) and (c). Note that the spectral roll-off with the 
chroma system is constructed using all the processing blocks. 
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4. EXPERIMENTAL RESULTS 

4.1. Model training 

The audio-tagging and source-separation models were trained in-
dependently. All experiments were conducted on a single Nvidia 
RTX A6000 graphics processing unit. 

4.1.1. Audio-tagging module 

The audio-tagging model paired a pretrained M2D [13] backbone 
with a custom, dual-path classification head that processed the 
main M2D embedding in parallel with an additional auxiliary au-
dio feature. The architecture of the auxiliary path was conditional 
on the dimensionality of the feature, as depicted in Fig. 3. 

First of all, the spectral roll-off or M2D embedding was pro-
cessed by two multilayer perceptrons (MLPs) to produce 256-di-
mensional (256D) embedding vector, as shown in Figs. 3(a) and 

3(b). Conversely, the chroma feature was processed by a convo-
lutional neural network consisting of two convolutional layers, re-
sulting in a 256D embedding, as shown in Fig. 3(c). In all config-
urations, the outputs of the two parallel paths were concatenated 
and input into a final linear classifier to produce the 18D class 
logits. 

In this work, we adopted the two-stage training strategy used 
for the baseline to ensure stable learning and effective fine-tuning. 

In other words, the first stage of the M2D backbone was frozen, 
and the classification head was trained for 140 epochs with a 
learning rate of 1×10−3 and a batch size of 32. Resuming from the 
Stage 1 checkpoint, Stage 2 unfroze the last two layers of the M2D 
backbone and performed joint fine-tuning with the head for 1,500 
epochs with a batch size of 128. 

The final tagging predictions were generated by a weighted 
ensemble of the four main models. The weights were assigned 

based on the validation set performance. The spectral roll-off and 
chroma features together (0.35) had the most significant influence 
on the model, followed by chroma feature alone (0.3), spectral 
roll-off alone (0.2), and the retrained baseline, which was assigned 
the lowest weight (0.15). 

4.1.2. Source-separation module 

For the separation task, we employed the ResUNetK checkpoint 
model from the DCASE 2025 Challenge Task 4 official GitHub 
[10]. The model was fine-tuned using the refined training dataset. 

4.2. Discussion 

The performance of the proposed audio-tagging model was evalu-
ated using the metrics mentioned in Section 3.4. Table 2 summa-
rizes the performance of different systems, demonstrating that the 
submitted systems consistently and progressively outperformed 
the official. 

The initial experiments focused on enriching the input repre-
sentation beyond the standard mel-spectrogram. Including the 
spectral roll-off feature yielded a modest but consistent improve-
ment across all metrics. Substantial improvement was achieved 

by adding the chroma feature, resulting in CA-SDRi increment by 
0.12 dB. This result confirms that providing explicit audio feature 
information is beneficial for this task, likely helping the model to 
distinguish between spectrally similar but harmonically distinct 
events, such as ‘Doorbell’ and ‘MusicalKeyboard’. 

One of the most significant improvements came from the da-
taset refinement. Auditing the source data to remove ambiguous 
samples and augmenting specific classes relatively increased CA-

SDRi by 10.9% compared to the official baseline. This result 
highlights a crucial aspect of working with synthesized datasets: 
model performance is highly sensitive to the quality of the source 
pool. Improving intraclass consistency and ensuring sufficient 
samples for all classes provides a much stronger foundation for 
the model to learn, demonstrated by the tagging and separation 
performance. 

The agent-based correction system presented positive results. 

Despite the agent occasionally removing true-positive labels, it 
improved the CA-SDRi by 0.2 dB, demonstrating its effectiveness 
in reducing the FPs that were heavily penalized by this metric. 
This trade-off between recall and precision highlights that opti-
mizing purely for tagging accuracy does not guarantee the best 
performance on the S5 task. A custom metric, the FP-penalized 
accuracy, was developed to navigate this balance better during 
model selection, enabling a more effective evaluation of models 

Table 2: Performance comparison of spatial semantic sound source separation models and the audio tagging model evaluated using standard 

(Acc1), macro-averaged (Acc2), and false-positive-penalized (Acc3) accuracy metrics. 
 

Models Train DB  w/o agent with Agent 

Audio-tagging 
model 

Source-separation 
model 

Refined Acc1 Acc2 Acc3 CA-SDRi Acc1 Acc2 Acc3 CA-SDRi 

Baseline ckpt* Baseline ckpt* No 59.80 82.07 55.77 11.088 61.47 81.20 55.43 11.244 

Baseline_retrained Baseline ckpt* Only AT 68.80 84.50 58.41 11.380 68.53 83.33 57.64 11.400 

Baseline_retrained ResUNetK Yes 68.80 84.50 58.41 12.306 69.00 83.97 58.06 12.340 

+ Spectral roll-off ResUNetK Yes 69.13 86.20 59.69 12.328 69.80 85.80 59.44 12.369 

+ Chroma ResUNetK Yes 68.27 86.23 59.65 12.426 68.93 85.90 59.49 12.475 

+ Spectral roll-off + 
Chroma 

ResUNetK Yes 69.53 86.23 59.73 12.532 69.20 85.70 59.29 12.541 

Ensemble** ResUNetK Yes 72.47 87.07 60.62 12.721 72.13 86.47 60.14 12.726 

* Baseline ckpt was released from the organizers of DCASE 2025 Task 4 [14]. 

** Ensemble model uses baseline retrained, spectral roll-off, chroma, and spectral roll-off + chroma. 
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based on their suitability for the CA-SDRi-driven goal. The over-
all positive influence of the agent on the primary competition met-
ric justifies its inclusion as a valuable, task-aware post-processing 
step. 

5. CONCLUSION 

This technical report presented the submission systems for the 
DCASE 2025 Challenge Task 4, focusing on a multifaceted ap-
proach to improve spatial semantic segmentation. The proposed 
strategy combined additional audio feature input (spectral roll-off 
and chroma), a dataset refinement process, and an agent-based er-
ror correction system. The experimental results demonstrated the 
value of this holistic approach. Each component contributed incre-
mentally to the final performance, culminating in a system that sig-

nificantly outperformed the baseline with a 14.7% relative increase 
in CA-SDRi. Moreover, careful data refinement yielded substan-
tial gains, and task-aware post-processing was crucial for optimiz-
ing the final competition metric, even if they resulted in a slight 
trade-off with intermediate tagging accuracy. 
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