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ABSTRACT

In this technical report, we describe our submission to the
DCASE 2025 Challenge Task 2, titled “First-Shot Unsupervised
Anomalous Sound Detection for Machine Condition Monitoring.”
Our system is a distance-based anomalous sound detection method
that determines whether a test input is normal or anomalous based
on the Euclidean distance to embeddings of normal data. To obtain
effective embeddings, we first apply the pretrained acoustic model
BEATs to the input audio clip without any fine-tuning. The resulting
patch-level features are then aggregated using Attentive Statistics
Pooling to form a fixed-dimensional representation. To further im-
prove the embeddings, we employ AcrFace-based multi-task learn-
ing with machine type and attribute classification objectives, which
are used only during training. Our system achieved an Ω score of
0.6132 on the official development dataset, corresponding to a 5.3
percentage point improvement over the baseline system (0.5599).

Index Terms— Anomalous Sound Detection, BEATs, Arc-
Face, Multi-task Learning, Attentive Statistics Pooling

1. INTRODUCTION

As automation and AI-based predictive maintenance become in-
creasingly important in manufacturing, Anomalous Sound Detec-
tion (ASD) is gaining attention as a powerful means of early fault
detection in machinery. However, practical deployment faces three
major challenges:

• Since anomalous sounds are rare and diverse, unsupervised
learning using only normal sounds is a realistic approach.

• Domain shifts occur due to differences in machine types and
installation environments [1].

• In “first-shot” conditions, only a very limited number of normal
sounds are available from unknown machines.

DCASE 2025 Task 2 addresses these issues by requiring
anomaly detection for unknown machines using only a single do-
main and a small number of normal samples [2]. A leading ap-
proach in the previous DCASE 2024 Task 2 [3] was the AITHU
system [4], which achieved high performance by fine-tuning the
pretrained acoustic model BEATs [5] with LoRA [6]. Inspired by
this approach, we also utilize BEATs for patch-level acoustic feature
extraction. However, to reduce training cost and improve scalabil-
ity, we adopt a simpler strategy by freezing the BEATs parameters
and avoiding any fine-tuning.
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The main ideas behind our method are summarized as follows:
1. We apply Attentive Statistics Pooling [7, 8, 9], an attention-

based mechanism that assigns patch-wise weights to extract
statistical features emphasizing localized anomalies.

2. We enhance the embedding representation through multi-
task learning with ArcFace [10], using machine type and at-
tribute classification as auxiliary tasks [11].

3. During inference, we employ a retraining-free, distance-
based detection method that computes anomaly scores with-
out relying on any classifier.

4. Since the BEATs parameters are frozen, we can pre-extract
and store patch-level features for all audio clips in advance,
which accelerates training and would enable scalability to
large datasets.

2. PROPOSED SYSTEM

The system consists of three modules and operates as a sin-
gle pipeline: “Feature Extraction, Discriminative Space Learning,
Distance-Based Inference.”

1. Embedding Representation Extraction
2. Embedding Enhancement via Multi-Task Training
3. Distance-Based Anomaly Scoring

2.1. Embedding Representation Extraction

2.1.1. Acoustic Feature Extraction

Given an input waveform a ∈ RT (10 seconds, 16 kHz, T =
160,000), we apply BEATs [5] to extract a sequence of patch-level
features. Specifically, we use the pretrained weights provided as
“BEATs iter3.pt,” which correspond to the BEATs Base model
trained on AudioSet [12]. All parameters of BEATs are kept frozen
during training to reduce computational cost.

BEATs first converts the input waveform into a log-Mel spec-
trogram with 128 frequency bins and approximately 1000 frames
(using a 25 ms window and a 10 ms hop size). This spectrogram
is divided into 2D patches of size 16 (frequency axis) × 16 (time
axis), resulting in a total of 128/16 × 1000/16 = 8 × 62 =
496 patches. Each patch is projected to a D-dimensional embed-
ding vector through a linear transformation, yielding a sequence of
patch-level feature vectors.

X = fBEATs(a) = [x1, x2, . . . , xP ], (1)
where xp ∈ RD , P = 496, and D = 768.
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2.1.2. Attentive Statistics Pooling

For each patch xp, we compute an attention weight as:

αp =
exp(v⊤a tanh(Waxp))∑P
j=1 exp(v

⊤
a tanh(Waxj))

, (2)

where
∑P

p=1 αp = 1. In this formulation, Wa ∈ Rda×D is a learn-
able projection matrix that projects the input patch feature xp into
a da-dimensional intermediate space, and va ∈ Rda is a learnable
vector used to compute a scalar attention score from the projected
representation. We set da = 128 in our submission.

Using these attention weights, we calculate the weighted mean
vector µ = [µ1, · · · , µD]⊤ ∈ RD and the weighted standard devi-
ation vector σ = [σ1, · · · , σD]⊤ ∈ RD as follows:

µd =

P∑
p=1

αpxp,d (3)

σd =

√√√√ P∑
p=1

αp (xp,d − µd)
2, (4)

where xp,d denotes the d-th element of the p-th patch feature.
These statistics are computed independently for each dimension
d = 1, . . . , D. We then concatenate these two vectors along the
feature dimension to obtain the final embedding:

zpool = [µ;σ], (5)

where zpool ∈ R2D .

2.2. Embedding Enhancement via Multi-Task Training

To improve the quality of the embedding zpool obtained from Atten-
tive Statistics Pooling, we apply multi-task learning using ArcFace
during training.

First, zpool is projected into a lower-dimensional space as fol-
lows:

e = ReLU(BN(Wezpool)), (6)

where We ∈ RE×2D is a learnable weight matrix, and BN and
ReLU denote batch normalization and the rectified linear unit acti-
vation function, respectively. We set E = 512 in our implementa-
tion. This projected embedding e is used only during training.

We then apply ArcFace-based classification to jointly learn ma-
chine type and attribute labels. For each classification task, we com-
pute the logit corresponding to label j as follows:

logitj =

{
s cos(θj +m) if j = y,

s cos θj otherwise,
(7)

θj = arccos

(
e⊤cj

∥e∥∥cj∥

)
, (8)

where y denotes the index of the ground-truth class, and j refers to
a candidate class index ranging over all classes. Here, cj ∈ RE is
a learnable weight vector corresponding to class j. We set s = 30
and m = 0.5 as scale and margin parameters, respectively. These
logits are passed through a softmax function to produce class proba-
bilities. Then, the cross-entropy loss is computed using the ground-
truth label y. The resulting losses are denoted as Lmain for machine

type classification and ℓi,n for the n-th sample in attribute classifi-
cation task i. The total loss is:

L = βLmain +

K∑
i=1

Ni∑
n=1

γi,n ℓi,n, (9)

where β is a balancing weight between the main and auxiliary tasks,
and γi,n denotes the weighting factor for the n-th sample in task
i. In our submission, we set β = 1.0 and defined γi,n based on
the number of attribute sub-tasks K associated with each machine.
Specifically, the weight for each sub-task is set to 0.2/K. For ex-
ample, if a machine has one sub-task (K = 1), then γi,n = 0.2; if
it has two sub-tasks (K = 2), then each is assigned γi,n = 0.1.

After training, only zpool is retained and used for inference,
while the projection and classification modules are discarded.

2.3. Distance-Based Anomaly Scoring

At inference time, anomalies are detected based on the Euclidean
distance between the embedding of a test input and those of normal
data. The process consists of two steps:

1. Normalization: Each dimension d of the test embedding
ztest

pool is normalized using the mean µm,d and standard devia-
tion σm,d computed from the embeddings of normal data for
machine type m:

ẑtest
pool,d =

ztest
pool,d − µm,d

σm,d
, (10)

for all d = 1, . . . , 2D. Here, µm,d and σm,d denote the
mean and standard deviation across the training embeddings
of machine type m, independently computed for each dimen-
sion. Note that these statistics are unrelated to the weighted
mean and standard deviation computed in Attentive Statistics
Pooling (eqs. (3) and (4)).

2. Anomaly scoring: The anomaly score is computed as the
minimum Euclidean distance from the normalized test em-
bedding ẑtest

pool to the set of normalized embeddings Êm
normal:

anomaly score(ẑtest
pool) = min

ẑ∈Êm
normal

∥∥ẑtest
pool − ẑ

∥∥ , (11)

where Êm
normal denotes the set of normalized embeddings

obtained from normal training inputs of machine type m.
Based on the computed anomaly score, a test input is classi-
fied as anomalous if the score exceeds a predefined thresh-
old. In our submission, this threshold is determined auto-
matically for each machine type by analyzing the distribu-
tion of anomaly scores derived from normal training sam-
ples. Specifically, we fit a Gamma distribution to the scores
of these normal samples and define the threshold as the 90th
percentile of the fitted distribution. This data-driven ap-
proach enables adaptive thresholding without requiring any
labeled anomalous data.

This scoring method allows for anomaly detection without ad-
ditional retraining or complex post-processing.
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Table 1: Overview of Compared Methods
Method BEATs Pooling Training Task Inference
Baseline (FS-AE) – – – Reconstruction Error
BEATs + Average Pooling Fixed Simple Average Machine Type Distance
BEATs + Attentive Statistics Pooling Fixed Weighted Stats Machine Type Distance
Proposed Fixed Weighted Stats Machine Type + Attributes Distance

Table 2: Detailed Scores by Machine Type (AUC src / AUC tgt / pAUC)
Method Metric bearing fan gearbox slider ToyCar ToyTrain valve
Baseline AUC(src) 0.748 0.656 0.712 0.759 0.833 0.500 0.554

AUC(tgt) 0.562 0.358 0.603 0.526 0.654 0.524 0.566
pAUC 0.547 0.514 0.515 0.536 0.666 0.497 0.519

Average Pooling AUC(src) 0.593 0.526 0.708 0.824 0.685 0.753 0.728
AUC(tgt) 0.589 0.500 0.650 0.554 0.642 0.744 0.627
pAUC 0.566 0.511 0.585 0.497 0.516 0.582 0.576

Attentive Statistics Pooling AUC(src) 0.626 0.571 0.691 0.805 0.614 0.749 0.765
AUC(tgt) 0.722 0.540 0.658 0.560 0.683 0.762 0.592
pAUC 0.610 0.507 0.597 0.501 0.535 0.610 0.586

Proposed AUC(src) 0.628 0.568 0.744 0.806 0.702 0.719 0.682
AUC(tgt) 0.728 0.553 0.686 0.541 0.723 0.743 0.707
pAUC 0.614 0.518 0.624 0.494 0.546 0.574 0.566

Table 3: Overall Ω Score (Harmonic mean of AUC and pAUC)
Method Ω Score
Baseline (FS-AE) 0.5599
BEATs + Average Pooling 0.5912
BEATs + Attentive Statistics Pooling 0.6076
Proposed 0.6132

3. EXPERIMENTS

3.1. Setup

We conducted our experiments using the DCASE 2025 Task 2 de-
velopment dataset [13, 14], which includes seven machine types:
bearing, fan, gearbox, slider, ToyCar, ToyTrain, and valve. During
training, only normal sound data were used in accordance with the
task definition, which assumes no access to anomalous samples. For
evaluation, we computed anomaly scores based on the Euclidean
distance between embeddings, and applied this scoring method to
both source and target domain samples. As the evaluation metric,
we calculate AUC and pAUC (with FPR ≤ 0.1) for each machine
type and domain (source/target), and use their harmonic mean:

Ω = Hmean(AUC, pAUC), (12)

as the final performance score. Here, Hmean(b1, b2) =
2b1b2
b1 + b2

denotes the harmonic mean of two values b1 and b2.

3.2. Compared Methods

Table 1 summarizes the four methods compared in this study. Each
method differs in its pooling strategy and task configuration. Note
that the baseline method (FS-AE) [15] does not use BEATs, while
the other methods use BEATs with frozen weights.

To evaluate the effectiveness of the proposed method, we com-
pare it with a baseline and two ablation variants, that differ in their

pooling strategy and training objectives. All methods use fixed
BEATs weights; the differences

3.3. Results and Discussion

As shown in Table 3, all methods utilizing BEATs embeddings out-
perform the baseline FS-AE system in terms of the overall Ω score,
indicating the benefit of using pretrained representations. Among
them, the proposed method achieves the highest score of 0.6132,
followed by Attentive Statistics Pooling (0.6076) and Average Pool-
ing (0.5912). This trend suggests that both attentive pooling and
multi-task learning are effective components contributing to perfor-
mance improvements.

Table 2 provides more detailed scores by machine type and do-
main. The proposed method achieves the best or comparable per-
formance in most cases. Notably, it records the highest pAUC for
bearing, fan, and gearbox, and the highest AUC in the target domain
for fan, gearbox, ToyCar, and valve. Meanwhile, for slider and Toy-
Train, the Attentive Statistics Pooling method slightly outperforms
the proposed method in AUC for the source domain, indicating that
attention-based pooling alone is particularly effective in these cases.

Overall, these results demonstrate that the combination of
BEATs embeddings, Attentive Statistics Pooling, and multi-task
classification yields robust and consistent performance across var-
ious machine types and domain conditions. The proposed method
provides a strong and generalizable approach to anomaly detection
in the DCASE 2025 Task 2 setting.

4. CONCLUSION

In this paper, we proposed a unsupervised anomalous sound detec-
tion system that combines Attentive Statistics Pooling and ArcFace-
based Multi-Task Learning, while keeping the BEATs model
frozen. The system employs distance-based inference without re-
quiring any classifier during inference.
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Our method achieved an Ω score of 0.6132 on the official
dataset, representing a 5.3 percentage point improvement over the
baseline, while significantly reducing training cost by avoiding fine-
tuning of the acoustic model.

In future work, we plan to extend the system to machine types
with limited attribute information by leveraging metadata and ex-
ploring self-supervised adaptation techniques, aiming for practical
deployment in real-world industrial environments.
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