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ABSTRACT

In this report, we present a system for the Spatial Semantic Segmen-
tation of Sound Scenes (DCASE 2025 Task 4), combining enhanced
source separation and label classification through an iterative verifi-
cation strategy. Our approach integrates the Masked Modeling Duo
(M2D) classifier with a separator architecture based on an atten-
tive ResUNeXt network. Inspired by recent advances in universal
audio modeling and self-supervised separation, our system incorpo-
rates feedback between multiple classification and separation stages
to correct early-stage prediction errors. Specifically, classification
outputs are verified using post-separation reclassification, and am-
biguous cases are resolved through targeted waveform subtraction
and re-analysis. This strategy enables improved source-label as-
sociations without increasing model complexity. Evaluated on the
development set, our method achieves a relative improvement of
0.28% in CA-SDRi and 1.46% in accuracy over the baseline.

Index Terms— Semantic Source Separation, Sound Classifica-
tion, Source Separation, UNet, DCASE25

1. INTRODUCTION

The task of Spatial Semantic Segmentation of Sound Scenes (S5),
introduced in the DCASE 2025 Challenge Task 4 [1], requires sys-
tems to simultaneously perform source separation and sound event
classification on real-world multi-source mixtures. Unlike tradi-
tional sound event detection (SED) tasks, S5 demands not only tem-
poral but also semantic disentanglement of individual sound sources
from overlapping audio mixtures. Building on the baseline systems
proposed by [2], which integrate the M2D [3] classifier with convo-
lutional separators, we propose a modified framework that explicitly
addresses the uncertainty in early predictions via an iterative con-
sensus strategy.

Our method draws inspiration from recent work on self-
supervised representation learning and universal source separation
[4], [5], where intermediate feature verification is used to refine
downstream tasks. Specifically, we enhance the separator network
with an attentive ResUNeXt backbone, capable of spectral pat-
terns via grouped convolutions and residual attention mechanisms.
This separator is trained with a spectrogram masking objective and
SpecAugment regularization to impove generalization.

What sets our system apart is the inclusion of an iterative
classification-separation-classification loop. After an initial label
estimation using M2D (Classifier 1), we perform source separation
conditioned on these labels. The separated waveforms are then re-
evaluated using a second classification pass (Classifier 2). Agree-
ment between the two classification stages acts as a proxy for sep-
aration success; in cases of disagreement, our system applies selec-

tive waveform subtraction and reclassification. This strategy gener-
alizes to any number of sources, enabling robust multi-source dis-
entanglement.

2. DATASET

The development set provided for the S5 DCASE [6] Task 4 is com-
prised of sounds from FSD50K [7], EARS [8], FOA-MEIR [9],
ESC-50 [10], DISCO [11] and some additional samples recorded
at NTT labs. For the purposes of this year’s task (and in our sys-
tem) all the data are sampled at 32 kHz.

We also chose to employ SpecAugment [12] to the input spec-
trograms on our separator network, setting both the frequency mask
parameter F and the time mask parameter T as 80 (default param-
eters). The augmented data are presented to our separator network,
after training on the original development set data is performed. As
shown in Section 4, by applying the masking operation, both CA-
SDRi [2] and label prediction accuracy metrics improve.

3. SYSTEM DESCRIPTION

Our proposed system-method comprises different combinations of
the same classifier and separator in an iterative consensus scheme
as described in subsection 3.4. The system first classifies the scene,
separates accordingly, and then uses agreement between two clas-
sification passes with the addition of targeted source subtraction to
self-verify and repair separation errors. This strategy lets the sys-
tem correct mis-separations without needing extra or different sepa-
rators. The chosen classifier is M2D [3], i.e. the same one used in
the baseline system [2]. In our work, we also implement a modified
version of the baseline system separator with ResNeXt connections
[13] and an attentive residual path [14], named ResUNeXt, as illus-
trated in Figure 1.

3.1. ResUNeXt

A ResNet block consists of a few layers that apply transformations
and add the result back to the input (e.g., the residual connection).
In our case, the ResNet block from [5], [15] consists of two con-
volutional layers with batch normalization and the residual path of
a convolution. A ResNeXt block is an enhanced version, with a
novel architectural parameter called “cardinality” (C), which is the
number of parallel transformations within the block. This means
that instead of one, multiple parallel paths (like a mini-ensemble)
exist, performing the same transformations with their outputs being
aggregated (summed, concatenated, or by grouped convolutions).

Cardinality is utilized as a new dimension of scaling, in a sense
that scaling a neural network (e.g., increasing the accuracy) focuses
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Figure 1: Attentive ResUNeXt (Figure modified from [14]).

on two axes: increasing either the layers (depth) or the channels
(width); Cardinality is introduced as a third axis that scales our
neural network without increasing the layers or the width, and thus
without increasing the computational cost. After a series of experi-
ments, the cardinality value is set as equal to 8, while the size of the
grouped convolutions (GC ) is chosen based on (1):

GC = ⌊4 ·OCh

32
⌋ · C, (1)

where OCh is the number of output channels in our convolutional
block. Following the same logic as in [13], our convolutional blocks
consist of three convolutions, preceded by batch normalization and
the leaky ReLU activation function. Every convolution has a diffe-
rent usage: The first one is used to reduce the dimension based
on the grouped convolution size taken from (1) and output GC

features-channels, the second one performs grouped convolutions
based on cardinality producing GC features-channels, while the last
convolution expands our channels-features to the desired output di-
mension size. Note that every encoder and decoder block have dif-
ferent input and output feature sizes as shown in Table 1. Our
separator network is trained using the SDR loss. The convolutional
block is illustrated in Figure 2.

3.2. Residual Attentive Path

Another mechanism that is utilized in our separator is self-attention,
as described in [14]. This module has the ability to preserve the key
features of the target source while suppressing the features of the
other components. It receives as input the output of the residual
path of the corresponding level of the encoder and the transposed
decoder output. The mechanism is a modified version of [16], with
the addition of convolutional layers.

By fine-tuning the network’s hyperparameters, the finalized ver-
sion of the attentive path uses the leaky Rectified Linear Unit (leaky
ReLU) as its activation function, as shown in Figure 3. Enc and
Dec denote the encoder and decoder output, respectively.
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Figure 2: ResNeXt Block (Figure modified from [15]).

3.3. Architecture Overview

The Attentive Multichannel ResUneXt takes as input the raw mul-
tichannel waveform and transforms it into the time-frequency do-
main using Short-Time Fourier Transform, following an encoder-
decoder architecture. This spectrogram is then normalized and
passed through a preliminary convolution to prepare the features for
encoding. Each encoder block consists of eight ResNeXt blocks,
incorporating grouped convolutions, and it outputs a downsampled
representation and a high-resolution residual connection for the de-
coder. Following [15], the encoder consists of five encoder blocks
and FiLM [17] layer conditioning to extract deep spectral features,
while progressively downsampling the time-frequency resolution.

At the core of the network, three ResNeXt blocks operate at the
most compressed resolution, enhancing the representational capac-
ity of the ResUNeXt architecture. These are followed by a symmet-
ric decoder that progressively upsamples the feature maps. Each
decoder block is built in a similar manner as an encoder block con-
sisting of eight ResNeXt blocks, while the entire decoder contains
five decoder blocks. Note that before the decoder block input, a
transposed convolution exists, so that the previous intermediate or
decoder layer is properly used as input to the attentive residual path.
This means that our encoder and decoder blocks use the same archi-
tecture, with the transposed convolution existing at the start of each
decoder layer.

3.4. Strategy

Before we define our strategy-algorithm to address the S5 task [6],
we need to reinstate the task problem. Let Y = [y(1), ...y(M)]T ∈
RM×T be the multichannel time-domain mixture signal of length
T , recorded with an array of M microphones. Let also C =
{c1, ..., cK} be the set of source labels in the mixture, where the
source count K can vary from 1 to Kmax. The m−th channel of
Y can be modeled as:

y(m) =

K∑
k=1

h
(m)
k ∗ sk + n(m) =

K∑
k=1

x
(m)
k + n(m), (2)
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Figure 3: Attentive Residual path (Figure modified from [14]).

Encoder Blocks
Layer Input Output

Channels Channels
Enc. Block 1 32 32
Enc. Block 2 32 64
Enc. Block 3 64 128
Enc. Block 4 128 256
Enc. Block 5 256 384

Intermediate Layers

Layer Input Output
Channels Channels

Intermed. Block 1 384 384
Intermed. Block 2 384 384
Intermed. Block 3 384 384

Decoder Layers

Layer Input Output
Channels Channels

Dec. Block 1 384 384
Dec. Block 2 384 256
Dec. Block 3 256 128
Dec. Block 4 128 64
Dec. Block 5 64 32

Table 1: Architecture of the Encoder, Intermediate, and Decoder blocks.

where sk ∈ RT is our target monoaural channel source signal cor-
responding to label ck, while h

(m)
k and n(m) are the m-th chan-

nel room impulse response (RIR) and noise. The noisy-wet source
x
(m)
k can be divided in two components: the direct path h

(m,d)
k ∗ sk

and the late reverberation h
(m,r)
k ∗sk, where h(m,d)

k and h
(m,r)
k are

the corresponding early and late parts of the RIR, respectively.
In order to make our notation easier, let us assume that we have

3 sources, i.e. K = 3, and also ignore the noise (both reverbation
and room noise) and let us also consider that we have only one
microphone instead of an array of microphones (monoaural sound)
to simplify our problem as shown in (3):

y =

K∑
k=1

sk
K=3⇒ y = s1 + s2 + s3 (3)

The main idea is to first identify the labels present in the input mix-
ture using a classifier, denoted as C1, and based on these predicted
labels we can then generate the corresponding waveforms using our
separator, denoted as Sep1. After the separation we again use a
classifier, denoted as C2, which operates on the separated signals.
Since identifying individual sources in isolated signals is signif-
icantly easier than doing so within a full mixture, C2 acts as a
validation step for the predictions made by C1. If the separation
is accurate (and therefore the classification), the second classifier
should confidently and correctly label the sources. Note that sym-
bols C1, C2, Sep1, Sep2, ... refer to the sequence of classifiers and
separators within the system pipeline, rather than to differences in
model architecture. In practice, the same classifier and separator
architectures may be reused across these stages. Our strategy is il-
lustrated in Figure 4.

We start by passing our mixture through a classifier in order
to obtain the labels and identify which sounds are present in the
mixture to ease the separation process. Let l1, l2, l3, l̄1, l̄2, l̄3 be the
predicted labels of C1 and C2 respectively, and let w1,w2,w3 be

the waveforms after the separation task. From here on, we have
four possible cases: (I) all labels are the same, (II) two labels are
the same, (III) one label is the same and (IV) no same labels.

For our purposes, we rewrite (3) as:

y = w1 +w2 +w3 (4)

3.4.1. Case I

For the first case where our two classifiers produced the same labels,
we assume that both the label prediction and the separation task are
successful and the process ends.

3.4.2. Case II

In the second case, different labels suggests that either one or both
the classification and separation tasks have failed. Recalling (4),
we can clearly understand that in order to find the third source we
simply need to subtract from our mixture the estimated waveforms.
Let us say that we identified and separated correctly the first and
third sources, i.d. l1 = l̄1, l3 = l̄3 and w1,w3 are the estimated
waveforms. The third estimation is then simply:

y = w1 +w2 +w3 ⇒ w2 = y −w1 −w3 (5)

In order to find the remaining estimated waveform’s label, we use a
third classifier C3 producing ¯̄l2 and ending the process. If ¯̄l2 is iden-
tical to one of the previous labels, then we consider w2 as silence
and only produce two waveforms.

3.4.3. Case III

In the third case where only one label is correct, we subtract the
corresponding waveform from our mixture, resulting in a new mix-
ture y1. Let us assume that l1 = l̄1 and w1 be the corresponding
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waveform. Then the new mixture y1 is:

y1 = w2 +w3 (6)

Here, we also take in note the probabilities of the previous clas-
sifiers in order to serve as a safeguard. We start by assigning to
the remaining two waveforms the class labels based on the highest
probabilities originating from C1 and C2. Now what is left to do
is to again pass the new estimated waveform y1 through a classifier
Ci, a separator Sepi and a classifier Ci+1, in the same manner as
before. The only change here is that we always choose the label as-
sociated with the highest probability originating from either the first
two classifiers (C1, C2) or from the last two classifiers (Ci, Ci+1).
In the case that silence is detected in our waveforms we assign it a
probability value of 0.51, approximately the same as the probability
threshold used in [2]. The process continues and we fall to one of
the three remaining cases: (I), (II), or (IV).

3.4.4. Case IV

In the final case, where none of the labels are the same, we always
choose the label with the highest probability, as predicted from the
previous two classifiers. After choosing the labels, we use a second
separator Sep2 in order to receive the final waveforms.

3.5. Strategy Generalization

To generalize our strategy for K sources, we denote the mixture
as y =

∑K
k=1 sk, where sk ∈ RT are the individual source sig-

nals corresponding to labels ck ∈ C. The system first employs
a classifier C1 to predict the set of active source labels {lk}Kk=1

along with their associated probabilities {plk}
K
k=1. Based on these

predictions, a separator Sep1 generates the estimated waveforms
{wk}Kk=1, which are subsequently evaluated by a second classi-
fier C2, producing a second set of labels {l̄k}Kk=1 and probabilities
{p̄lk}

K
k=1.

The agreement between the label sets {lk} and {l̄k} guides the
subsequent steps. For each pair (lk, l̄k), agreement implies reliable
separation and classification, while disagreement indicates ambigu-
ity. When fewer than K labels agree across classifiers, the remain-
ing waveform estimates are refined through subtraction from the
original mixture: for an unknown source j, wj = y −

∑
k ̸=j wk.

These residuals are reclassified using new classifiers Ci until label
agreement improves or silence is detected. This iterative process
continues, branching into cases based on the degree of label over-
lap, until a consistent label-waveform mapping is achieved across
all K estimated sources.

4. RESULTS

4.1. Development Set

In Table 2 we depict the comparison of the evaluation metrics
[2] between the system baseline and our proposed system in the
validation-test set (of the development set). We can readily observe
that, compared to the baseline, we managed to achieve a 0.28% rel-
ative increase in the CA-SDRi score (from 11.088 to 11.119) and
a 1.46% relative improvement in label prediction accuracy (from
59.8% to 60.67%).

The observed improvements in both CA-SDRi and classifi-
cation accuracy stem directly from the design of our iterative
classifier-separator strategy. Unlike the baseline systems, which
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Figure 4: Strategy generalization.

perform classification and separation sequentially without verifica-
tion, our method introduces a closed-loop mechanism where classi-
fication results are validated post-separation using a second classi-
fier. This enables error correction and refined source-label associa-
tions. The strategy not only improves the quality of the source esti-
mation, but also enhances the semantic understanding of the scene.

System CA-SDRi (dB) Accuracy (%)
M2D + ResUNet (baseline) 11.032 59.80
M2D + ResUNetk (baseline) 11.088 59.80
M2D + Att. ResUNeXt w/o SpecAugment 11.035 59.80
M2D + Att. ResUNeXt 11.040 59.80
M2D + Att. ResUNeXt + strategy 11.119 60.67

Table 2: Results from the baseline and proposed systems on the
validation-test set.

4.2. Evaluation Set

The results achieved from our submission in the evaluation set may
be reported in a revised version of this technical report.

5. CONCLUSIONS AND FUTURE WORK

We presented a solution for Task 4 of the 2025 DCASE Challenge
using a CNN based separator, addressing the separation and clas-
sification tasks as a whole and not separately. In particular we im-
plemented a new type of separator using ResNeXt connections with
the addition of an attentive residual path in order to better learn the
spectrogram masks. By using our strategy we manage to validate
our hypothesis that jointly optimizing classification and separation
through iterative verification enhances both components of the sys-
tem.

In future work, we will investigate possible improvements with
the use of all microphones present in the microphone array with
signal augmentation techniques or by applying weights for every
channel prediction on the classification task. Finally, we will also
explore a combination of different classifier and separator networks
in our strategy in order to further improve our results.
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