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ABSTRACT

This report presents our submission for the DCASE 2025 Challenge
Task 2 on first-shot unsupervised anomalous sound detection. We
propose a contrastive learning-based framework designed to cap-
ture fine-grained patterns from spectrogram representations while
adapting to both attribute-rich and attribute-absent machine condi-
tions. The method leverages local feature learning and selectively
integrates auxiliary metadata to enhance generalization under do-
main shifts. Training is performed jointly across all machine types
using only normal data. Anomaly scoring is carried out in a learned
embedding space using a statistical distance-based method. Our ap-
proach outperforms official baselines in both source and target do-
mains on the development dataset, demonstrating strong potential
for robust and flexible industrial anomaly detection.

Index Terms— unsupervised anomaly detection, first-shot
learning, contrastive representation learning, spectrogram features,
attribute-aware modeling, domain adaptation, industrial sound
monitoring

1. INTRODUCTION

Anomalous Sound Detection (ASD) is a key component of pre-
dictive maintenance in industrial systems. It involves determining
whether a sound emitted by a machine is abnormal—an essential
task to prevent potential mechanical failures, ensure safety, and re-
duce downtime. The 2025 edition of the DCASE Challenge Task 2,
“First-Shot Unsupervised Anomalous Sound Detection for Machine
Condition Monitoring,” advances this problem setting by introduc-
ing more realistic constraints. Participants must detect anomalies
across previously unseen machine types, often using only a single
ID’s normal data and without any anomalous training examples or
complete metadata.

This “first-shot” scenario reflects practical challenges in real-
world industrial deployment. First, anomalies are inherently rare
and difficult to collect, making it impractical to rely on fully super-
vised models. Second, domain shifts—caused by changes in back-
ground noise, operational modes, or recording devices—introduce
significant distributional variance between training and testing en-
vironments. Third, attribute metadata such as machine ID or load
condition may be partially missing or noisy, limiting the ability to
condition models on known context. Therefore, the central chal-
lenge lies in building models that are both generalizable across do-
mains and robust to incomplete supervision.

In this report, we present a patch-level, metadata-aware con-
trastive learning framework designed to tackle these challenges. In-
stead of encoding entire spectrograms globally, our model splits in-
put audio representations into overlapping patches, which are en-

coded through a shared visual backbone. This enables the learning
of localized audio representations that are sensitive to fine-grained
anomalies. An attention-based pooling module selectively aggre-
gates patch-level features, modulated by auxiliary metadata when
available. We further incorporate attribute embeddings into the con-
trastive objective through early fusion, enabling the model to adjust
dynamically to varying levels of label completeness.

The entire system is trained in a self-supervised manner using
a contrastive loss function over pairs of augmented spectrograms.
During inference, embeddings are scored using Mahalanobis dis-
tance to reference normal distributions derived from training data.
This approach enables anomaly detection based purely on distribu-
tional shifts in the learned feature space, without requiring anomaly
labels or per-machine tuning.

Our experiments on the DCASE 2025 development dataset
demonstrate that this method achieves strong generalization across
both attribute-rich and attribute-absent conditions, outperforming
baseline systems in multiple domains. The combination of local
feature modeling, contrastive pretraining, and metadata-aware pool-
ing proves to be a robust and effective strategy for first-shot unsu-
pervised anomaly detection.

2. PROPOSED METHODOLOGY

We propose a self-supervised patch-level representation learning
framework, augmented with attribute-conditioned attention and
domain-adaptive anomaly scoring. Our pipeline is designed to
tackle two central challenges in DCASE2025 Task 2: (i) general-
ization to unseen target domains, and (ii) handling partial or noisy
metadata. The model learns robust localized features from log-Mel
spectrograms via contrastive learning over augmented patch views.

2.1. Audio Preprocessing

Each 10-second audio clip is resampled to 16 kHz to ensure consis-
tent time resolution across all devices. The waveform x(t) is then
transformed into a time-frequency representation using the log-Mel
spectrogram, computed with:

• FFT size nfft = 1024

• Hop length h = 512

• M = 128 Mel filter banks
• Sampling rate: 16kHz

This yields a matrix S ∈ R128×T , where T ≈ 313 time frames
for a 10 s segment.
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We compute the log-compressed Mel energies:

logmel(x) = log

(
MelSpec(x)

max(MelSpec(x))
+ ϵ

)
, ϵ = 10−6

This transformation ensures numerical stability while enhanc-
ing low-amplitude regions that might encode anomalies. The result-
ing grayscale spectrogram is duplicated across 3 channels (RGB)
and resized to 224 × 224 via bilinear interpolation to match input
requirements of standard CNN backbones.

2.2. Patch-Based Representation Learning

To capture fine-grained anomaly cues, the full spectrogram image
I ∈ R3×224×224 is divided into overlapping square patches of size
32×32, using a fixed stride of 16. Each patch pi,j corresponds to a
localized time-frequency region, allowing the model to reason over
temporal and spectral variations independently.

Formally, we define the set of extracted patches as:

P(I) =
{
Ii,j | Ii,j ∈ R3×32×32, (i, j) ∈ G

}
where G defines the grid of valid patch coordinates. We cap the
maximum number of patches per view to 64 for memory efficiency.

Patch-wise representation allows our model to detect highly lo-
calized disruptions such as short squeaks or transient distortions,
which might be missed by holistic encoders.

2.3. View Generation via Data Augmentation

To enforce representational invariance, we create two stochastic
augmentations x1 = t1(x) and x2 = t2(x) of the same spectro-
gram. Each transform includes:

• RandomResizedCrop (scale range: 0.8–1.0)
• Horizontal flip
• Color jitter (brightness, contrast, saturation)
• Grayscale conversion (p=0.2)
• Per-channel normalization to zero mean, unit variance

These transformations simulate domain perturbations (e.g.,
lighting conditions, camera variations) and force the model to learn
content-preserving representations. Each view is independently
patchified, yielding {p(1)i } and {p(2)i }.

2.4. Patch Encoding and Projection

Each patch pi is resized to 224×224 and passed through a ResNet-
34 encoder fθ pretrained on ImageNet. The output is a feature vec-
tor hi ∈ R512, capturing mid- to high-level visual semantics.

These vectors are projected into a contrastive embedding space
via an MLP:

zi = W2 · ReLU(W1hi + b1) + b2, zi ∈ R128

This projection is shared across patches and views, ensuring
consistent feature alignment. The latent dimension of 128 was em-
pirically chosen to balance expressivity and generalization.

2.5. Attention Pooling with Attribute Conditioning

The patch embeddings {z1, . . . , zN} are aggregated into a global
vector using an attention mechanism that optionally incorporates
device metadata (e.g., RPM, temperature, load).

The attention weights are computed via:

αi =
exp(w⊤ tanh(Wazi))∑
j exp(w

⊤ tanh(Wazj))

If attributes a ∈ Rda are available, a bias term β = W⊤
attra is

added to every score:

αi =
exp(w⊤ tanh(Wazi) + β)∑
j exp(w

⊤ tanh(Wazj) + β)

The final embedding is a weighted sum:

zpooled =

N∑
i=1

αizi

2.5.0.1. Early Fusion of Attributes:
To retain device-specific context, the attribute vector is also

passed through an MLP to produce a′ ∈ R128:

a′ = MLP(a), zfinal = [zpooled; a
′]

This design allows for flexible fusion: models trained on
datasets without attributes fall back to standard attention, while
those with metadata benefit from conditional reasoning.

2.6. Contrastive Learning Objective

We use the NT-Xent loss to train embeddings that pull together
views of the same sample and push apart other instances:

Li = − log
exp(sim(z

(1)
i , z

(2)
i )/τ)∑2N

k=1 1[k ̸=i] exp(sim(z
(1)
i , zk)/τ)

sim(u, v) =
u⊤v

∥u∥∥v∥ , τ = 0.1

The loss is averaged across all N instances in the batch. This
formulation effectively separates normality clusters across domains
without using labels, facilitating unsupervised pretraining.

2.7. Domain-Adaptive Inference

To tackle domain shift, we employ a two-step statistical modeling
approach:

1. Compute domain-specific means µs, µt from normal sam-
ples in the source and target domains.

2. Estimate a shared empirical covariance Σ using the pooled
embeddings.

At evaluation time, for each test embedding z we compute two Ma-
halanobis distances:

ds(z) = (z − µs)
⊤Σ−1(z − µs), (1)

dt(z) = (z − µt)
⊤Σ−1(z − µt). (2)
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We then define the final anomaly score as

score(z) = min
{
ds(z), dt(z)

}
.

Finally, we form the threshold τ as the 92%-percentile of the union
of all normal distances:

τ = Percentile0.92
(
{ds(x)}x∈N ∪ {dt(x)}x∈N

)
,

and declare z anomalous if score(z) > τ .
This allows the system to detect outliers relative to both seen

and unseen domains, adapting to varied operating environments.

2.8. Implementation Details

• Backbone: ResNet-34, pretrained on ImageNet
• Patch size: 32× 32, stride = 16
• Max patches: 64 per view
• Embedding dim: 128 (256 if attributes are concatenated)
• Temperature: 0.1 (for NT-Xent loss)
• Training: 500 epochs, Adam optimizer with initial LR = 2 ×

10−4

• LR scheduler: ReduceLROnPlateau (patience=10, fac-
tor=0.5)

• Early stopping: patience = 25 epochs
• Batch size: 256
• Training split: joint across all machine types, with per-sample

attributes padded to a common size

3. RESULTS AND DISCUSSION

We evaluated the performance of our system on the development
dataset using AUC and partial AUC (pAUC, FPR 0.1) as evaluation
metrics. Our method is compared with the official DCASE2025
baselines: the MSE-based autoencoder and the Mahalanobis dis-
tance model. Table 1 presents the average performance across
source and target domains for all machine types.

3.1. Discussion

Our method outperforms the baselines in several challenging ma-
chine types, particularly in the target domain where domain shift is
more significant. Notable improvements are observed in machines
like valve, ToyTrain, and ToyCar, demonstrating the robustness of
patch-wise contrastive representation learning combined with at-
tribute conditioning.

Despite slightly lower performance in the fan machine com-
pared to Mahalanobis, our method shows more balanced detec-
tion across domains. This indicates that the proposed attention and
metadata-aware fusion is effective in handling partial attribute avail-
ability.

The strong performance in the valve class suggests the model’s
strength in modeling aperiodic, impulse-heavy signals via localized
patches, while the improvements in ToyTrain confirm the effective-
ness of domain-aware Mahalanobis scoring.

Further ablation could study the individual contributions of at-
tention pooling, metadata fusion, and patch-level representation in
isolation.

Table 1: AUC and pAUC (%) comparison on development set (Ave.
across 3 runs)

Machine Metric MSE MAHALA Ours

ToyCar AUC(src) 66.98 63.01 62.12
AUC(tgt) 33.75 37.35 64.36

pAUC 48.77 51.04 49.05

ToyTrain AUC(src) 76.63 61.99 61.36
AUC(tgt) 46.92 39.99 64.16

pAUC 47.95 48.21 54.32

bearing AUC(src) 62.01 54.43 60.88
AUC(tgt) 61.40 51.58 69.40

pAUC 57.58 58.82 58.32

fan AUC(src) 70.96 77.99 59.72
AUC(tgt) 38.75 38.56 55.44

pAUC 49.46 50.82 51.58

gearbox AUC(src) 70.40 81.32 67.12
AUC(tgt) 69.34 74.35 59.64

pAUC 55.65 55.74 54.74

slider AUC(src) 66.51 75.35 68.88
AUC(tgt) 56.01 68.11 59.40

pAUC 51.77 49.05 53.05

valve AUC(src) 51.07 55.69 94.16
AUC(tgt) 46.25 53.61 68.16

pAUC 52.42 51.26 63.16

4. CONCLUSION

In this report, we proposed a novel patch-wise contrastive learning
framework for first-shot unsupervised anomalous sound detection
under domain-shift and partial attribute conditions, as required by
the DCASE2025 Task 2 challenge. Our system introduces attribute-
conditioned attention pooling and a metadata-aware fusion mecha-
nism that enables robust representation learning even when attribute
labels are partially missing.

By leveraging ResNet-based encoders with strong data aug-
mentation and contrastive objectives, the model learns localized
anomaly-sensitive embeddings. At inference time, domain-specific
Mahalanobis scoring allows for effective domain adaptation with-
out explicit labels from the target distribution.

Experimental results on the DCASE2025 development dataset
show that our method outperforms standard MSE and Mahalanobis
baselines across multiple machine types, particularly under chal-
lenging target domain settings. The proposed system achieves
strong generalization with minimal supervision, making it a promis-
ing approach for real-world industrial condition monitoring.

Future work includes extending this architecture with diffusion-
based augmentation, transformer-based encoders, and a deeper
analysis of patch-level anomaly localization.
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