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ABSTRACT
Unsupervised pretrained models have achieved remarkable success
across a wide range of applications. In this report, an approach
is presented for DCASE 2025 Task 2: First-shot Unsupervised
Anomalous Sound Detection for Machine Condition Monitoring.
To address this challenge, an anomaly detection algorithm is pro-
posed, which combines density estimation with cross-domain in-
terpolation to robustly detect anomalies. Additionally, a two-stage
pretraining strategy within a teacher-student framework is adopted
to enhance audio data representation. A dual-headed network ar-
chitecture is developed to leverage both labeled and unlabeled loss
functions, mitigating the scarcity of labeled data. Finally, to op-
timize the ensemble of several large-scale models, an adaptive
weighted combination perturbation search algorithm is introduced
to determine the optimal fusion weights. Collectively, these meth-
ods achieve a score of 69.94% on the official development dataset,
significantly surpassing the baseline model.

Index Terms— Anomalous sound detection, Pretrained model,
Transformer, Ensemble, KNN

1. INTRODUCTION

In recent years, anomalous sound detection (ASD) has emerged as
a critical task within the Detection and Classification of Acoustic
Scenes and Events (DCASE) challenge [?, 1–7]. As a specialized
branch of anomaly detection, ASD builds upon conventional algo-
rithms by incorporating techniques specifically tailored to acous-
tic anomaly identification. Traditional approaches to anomaly de-
tection include statistical methods such as Gaussian Mixture Mod-
els (GMM), distance-based methods, including k-Nearest Neigh-
bors (k-NN), Local Outlier Factor (LOF), and Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN), as well as
clustering techniques such as K-means [9]. These methods typi-
cally operate by modeling normal data distributions and assigning
anomaly scores to unknown samples based on their distance from
or deviation relative to the learned distribution.

However, applying these methods directly to ASD presents two
significant challenges. First, the high dimensionality of raw time-
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domain audio signals leads to the “curse of dimensionality,” render-
ing direct modeling computationally infeasible and less effective.
Second, anomalous patterns are often subtly embedded within the
temporal structure of the signal, making it difficult to distinguish
between normal and abnormal sounds. Even when using acoustic
features such as short-time spectra or Mel-frequency cepstral coef-
ficients (MFCCs), the extracted representations often fail to capture
the nuanced characteristics of anomalies. As a result, traditional
methods generally exhibit suboptimal performance when applied
directly to ASD tasks.

Currently, several core algorithmic paradigms dominate the
field of anomalous sound detection (ASD). The primary category
includes generative methods that rely on reconstruction error, such
as Autoencoders (AE), Variational Autoencoders (VAE), Genera-
tive Adversarial Networks (GAN), and diffusion models. These
approaches typically model normal sound signals and compute
anomaly scores by quantifying the discrepancy between the input
and its reconstruction. However, such methods often demonstrate
limited robustness against noise and domain shifts. Under condi-
tions of low signal-to-noise ratio (SNR) or domain mismatch, even
normal signals may deviate significantly from the learned distribu-
tion, resulting in increased false alarms and diminished discrimina-
tive performance [10].

To mitigate these limitations, auxiliary classification-based
methods have garnered growing interest. Although anomalous sam-
ples are generally unavailable, metadata such as device identity
and operational conditions associated with normal signals is often
available. These methods construct auxiliary classification tasks us-
ing normal data, enabling the network to simultaneously compress
high-dimensional time-domain inputs and extract semantically rich
embeddings. Traditional anomaly detection techniques can then be
applied to these embeddings. This strategy enhances the ability to
capture intrinsic acoustic features and improves robustness to noise
and domain shifts during training [11].

Despite these advantages, classification-based approaches face
inherent limitations. Specifically, distributional gaps across differ-
ent device types pose a significant challenge. While these meth-
ods perform well within the same device category, their generaliza-
tion across different devices is limited, which restricts their gener-
alizability across diverse operational conditions. In response, fine-
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tuning large-scale pretrained models has emerged as a promising
solution, trained on diverse and extensive audio datasets, learn gen-
eralizable representations, thereby enhancing cross-domain perfor-
mance. Nevertheless, they are not specifically optimized for tar-
geted ASD applications. Fine-tuning can adapt pretrained models
to specific domains, although adaptation is often limited to a subset
of parameters. As a result, performance gains are modest, and de-
tection accuracy often varies considerably across device categories.
Motivated by these challenges, this study introduces a novel ASD
algorithm that combines ensemble learning and domain generaliza-
tion to improve performance and robustness in diverse acoustic en-
vironments.

Anomalous sound detection (ASD) continues to face several
critical challenges. First, a significant domain shift persists: al-
though the source domain contains abundant labeled data, the target
domain often suffers from data scarcity, leading to suboptimal per-
formance in cross-domain settings. Second, the absence of annota-
tions related to specific operational conditions in the dataset limits
the effectiveness of auxiliary classification objectives, which in turn
degrades the quality of the learned embeddings. To address these
issues, this study introduces and integrates the following key ap-
proaches:

1. Density-Aware Domain Synthesized K-Nearest Neigh-
bors (DADS-KNN):
To address distributional disparities between the source and
target domains, we propose a novel DADS-KNN approach
that integrates density estimation with cross-domain interpo-
lation to facilitate robust cross-domain anomaly detection.

2. Task-Adaptive Teacher-Student Pretraining (TATS):
By leveraging an auxiliary dataset of machine operation
signals and large-scale pretrained models, we construct
a teacher-student framework incorporating a task-adaptive
pretraining strategy to enhance applicability to ASD-specific
tasks.

3. Adaptive Combination Perturbation (ACP):
To mitigate performance variability across large-scale pre-
trained models, we introduce the ACP algorithm, which
dynamically optimizes ensemble weights via perturbation-
based search, aimed at maximizing overall ensemble effec-
tiveness.

4. Two-Stage Dual-Head Semi-Supervised Learning (TS-
DHSSL):
To overcome the absence of attribute-level annotations, we
propose a TS-DHSSL framework that jointly learns from la-
beled and unlabeled data within a unified semi-supervised
structure for improved representation learning under weak
supervision.

2. METHOD

The proposed approach utilizes five distinct pretraining strategies.
The first strategy involves full-parameter fine-tuning, wherein the
backbone of a large-scale pretrained model is retained. An attentive
statistical pooling layer is employed to compress the frequency di-
mension into a fixed-dimensional representation, followed by two
fully connected layers for feature transformation. The classifica-
tion head is supervised using the ArcFace loss function to enhance
inter-class separability and intra-class compactness. The training

schedule incorporates a warm-up stage and applies cosine anneal-
ing for learning rate scheduling to promote stable convergence and
improve model generalization.

The second fine-tuning strategy involves augmented data train-
ing, in which pure noise and clean, background-free audio are in-
corporated as auxiliary categories associated with each device type.
The classification task is subsequently retrained to include these ad-
ditional categories, enabling the model to better distinguish truly
anomalous signals from variations induced by noise or recording
artifacts.

The third strategy employs Low-Rank Adaptation (LoRA),
which introduces trainable low-rank decomposition modules into
selected weight matrices, such as the attention layers of the pre-
trained model. By freezing the original model parameters and up-
dating only the introduced low-rank matrices, this approach signif-
icantly reduces the number of trainable parameters and computa-
tional overhead, while preserving the model’s representational ca-
pacity.

The fourth fine-tuning approach employs a dual-head network
architecture with a two-stage training scheme. In the first stage,
the network is trained using conventional supervised learning. Sub-
sequently, clustering is performed on unlabeled data to produce
pseudo-labels. In the second stage, labeled and unlabeled data are
optimized independently using task-specific loss functions, which
are then integrated into a unified objective for joint training.

The fifth approach adopts a secondary pretraining scheme based
on a teacher–student framework. Historical datasets are consoli-
dated to enable joint training of both teacher and student models,
where the student model is updated via backpropagation, while the
teacher model is updated through an exponential moving average
(EMA) of the student’s weights. This mechanism retains the orig-
inal pretrained model’s generalization ability on audio signals and
mitigates the performance degradation typically caused by training
on historical datasets.

To enhance anomaly detection, this study proposes the Density-
Aware Domain Synthesized K-Nearest Neighbors (DADS-KNN)
algorithm. This approach integrates target domain interpolation
with local density information surrounding each sample during in-
ference, resulting in a robust and adaptive detection framework.

To address the performance variability among large pretrained
models, this study introduces the Adaptive Combination Perturba-
tion (ACP) algorithm. Starting from a fixed ensemble of models,
ACP iteratively refines the fusion weights via stochastic perturba-
tions guided by performance feedback. A decay factor is incorpo-
rated into the perturbations to control the search range and improve
stability. At each iteration, small perturbations are applied to the
current weight vector, followed by normalization, and the config-
uration yielding the optimal fusion performance is retained. This
process enables efficient and adaptive optimization of weight allo-
cation within the fixed model ensemble.

3. MODEL

BEATs (Bidirectional Encoder representation from Audio Trans-
formers) is an iterative self-supervised learning framework that
jointly optimizes an acoustic tokenizer and an audio encoder to gen-
erate semantically rich discrete label predictions from audio data.
The tokenizer is initially initialized with random projections and
trained through masked prediction. Subsequently, semantic knowl-
edge is distilled from a pretrained model to iteratively refine both
the tokenizer and the audio encoder [12]. In this study, all five
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Table 1: Source domain AUC, target domain AUC, pAUC, and harmonic mean of the BEATs, SSLAM, EAT and ResNet network under
different training strategies.

Model AUC(source) AUC(target) pAUC hmean

BEATs 70.03 67.23 57.22 64.33
BEATs all 69.98 67.77 55.53 63.76

BEATs LoRA 71.16 63.31 55.69 62.75
BEATs TATS 70.69 66.52 56.98 64.20

BEATs TATS2 69.30 66.31 57.50 63.96
BEATs TS 73.11 69.82 58.12 66.36

SSLAM 66.57 65.07 56.99 62.58
SSLAM TATS 71.06 65.45 58.24 64.49
SSLAM TATS2 72.26 64.71 58.26 64.58
SSLAM TATS3 69.14 68.22 56.52 64.08

SSLAM TS 67.81 64.44 55.41 62.10

EAT 54.23 62.76 53.86 56.67
EAT TATS 70.75 67.95 57.65 64.94

EAT TS 64.91 62.80 53.63 60.03

ResNet 67.71 67.97 57.60 64.05
ResNet all 66.07 68.69 57.24 63.61

previously described training strategies were applied to the BEATs
large model. The fifth strategy was further extended by incorporat-
ing datasets spanning multiple years, yielding a total of six distinct
training approaches.

SSLAM (Self-Supervised Learning from Audio Mixtures) is
a novel audio self-supervised learning framework specifically de-
signed for complex multi-audio environments to enhance the
model’s capacity to represent and generalize across real polyphonic
audio signals. Notably, SSLAM employs mixed audio inputs dur-
ing training, substantially improving robustness and generalization
in multi-source environments while maintaining performance on
single-source tasks [13]. In this study, five training strategies are ap-
plied to the SSLAM model, specifically leveraging the first, fourth,
and fifth methods described previously. The fifth method is further
extended by incorporating multi-year datasets.

The Efficient Audio Transformer (EAT) is a computationally
efficient self-supervised audio learning framework that employs a
bootstrapping training paradigm to substantially reduce pretraining
costs while preserving performance. This method introduces the
novel Utterance-Frame Objective (UFO) to enhance acoustic event
modeling and highlights the importance of masking strategies in au-
dio self-supervision by proposing large-scale inverse block masking
to enhance representation quality [14]. In this study, three training
strategies—the first, fourth, and fifth methods—are applied to the
EAT model.

ResNet, renowned for its strong feature extraction capabilities,
has been extensively employed in anomalous sound detection. By
utilizing residual connections, ResNet enables the effective training
of deeper network architectures, facilitating the extraction of salient
audio features from spectrograms and thereby improving both the
accuracy and robustness of anomaly detection. In this study, the
first and second training strategies were applied to ResNet.

The the above four methods evaluation results are presented in
Table 1.

Incorporating the Adaptive Combination Perturbation (ACP)
algorithm, the optimized weight parameters for the four systems
submitted in this study are detailed in Table 2:

Table 2: Weight settings for different network models.
Model System 1 System 2 System 3 System 4

BEATs 1 0.001 1 0.001
BEATs all 1 0.001 1 0.058
BEATs LoRA 1 0.001 1 0.010
BEATs TATS 1 0.001 1 0.106
BEATs TATS2 1 0.057 1 0.138
BEATs TS 1 0.101 1 0.157
SSLAM 1 0.114 1 0.162
SSLAM TATS 1 0.063 1 0.045
SSLAM TATS2 1 0.163 1 0.010
SSLAM TATS3 1 0.001 1 0.098
SSLAM TS 1 0.098 1 0.001
EAT 1 0.001 1 0.001
EAT TATS 1 0.189 1 0.205
EAT TS 1 0.001 1 0.010
ResNet 1 0.215 0 0
ResNet all 1 0.001 0 0

4. SUBMIT SYSTEM

The four submitted systems, as previously described, were evalu-
ated using metrics including AUC and pAUC. Specifically, source
domain AUC, target domain AUC, pAUC, and their harmonic mean
were computed. Among these, the SSLAM and BEATs networks
exhibited superior performance. The application of the proposed
Adaptive Combination Perturbation (ACP) algorithm further re-
vealed that SSLAM contributed most significantly to the overall
score. Due to the limited generalization capability of the ResNet
network, its weight contributions were excluded in Systems 3 and
4. Additionally, a simple averaging of all weights—a method
known for its robustness—was also employed. Applying the ACP
algorithm to optimize the weights across all networks, System 2
achieved the best performance, attaining a harmonic mean score of
69.94%. The corresponding evaluation results are summarized in
Table 3.
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Table 3: results of four submitted systems on the development set.
Machine + Metric System 1 System 2 System 3 System 4

Bearing AUC (source) 63.24 67.52 63.48 68.16
Bearing AUC (target) 74.32 72.44 75.24 74.24
Bearing pAUC 62.26 63.11 62.74 63.00
Bearing hmean 66.18 67.47 66.69 68.16
Fan AUC (source) 62.76 64.60 62.52 64.96
Fan AUC (target) 57.16 58.80 57.40 60.08
Fan pAUC 54.42 55.42 53.63 55.63
Fan hmean 57.91 59.37 57.62 59.98
Gearbox AUC (source) 77.68 76.08 78.08 76.08
Gearbox AUC (target) 89.00 90.32 84.68 84.80
Gearbox pAUC 74.05 74.26 71.11 71.84
Gearbox hmean 79.76 79.61 77.56 77.21
Slider AUC (source) 81.40 80.04 81.44 80.44
Slider AUC (target) 63.08 63.52 62.24 61.60
Slider pAUC 56.26 55.74 56.32 56.26
Slider hmean 65.34 64.97 65.07 64.60
ToyCar AUC (source) 61.20 69.20 61.20 66.68
ToyCar AUC (target) 73.12 72.68 74.56 75.04
ToyCar pAUC 54.95 59.84 54.68 58.33
ToyCar hmean 62.22 66.78 62.45 66.07
ToyTrain AUC (source) 81.76 81.60 82.20 82.60
ToyTrain AUC (target) 74.76 74.32 74.32 74.84
ToyTrain pAUC 58.42 58.84 58.11 59.21
ToyTrain hmean 70.22 70.25 70.04 70.83
Valve AUC (source) 95.16 99.56 93.76 96.16
Valve AUC (target) 85.20 82.92 81.12 77.36
Valve pAUC 76.05 85.53 72.37 76.89
Valve hmean 84.76 88.77 81.50 82.57
Overall AUC (source) 72.93 75.53 72.91 75.15
Overall AUC (target) 72.29 72.24 71.59 71.61
Overall pAUC 61.31 63.24 60.49 62.21
Overall Office score 68.41 69.94 67.85 69.21

5. CONCLUSION

This paper proposes an ensemble and domain-generalized frame-
work for anomalous sound detection. It introduces a KNN-based
anomaly detection algorithm that integrates density estimation with
cross-domain interpolation. To leverage related audio data, a Task-
Adaptive Teacher-Student (TATS) pretraining strategy is developed,
which preserves the pretrained model’s generalization capability
while enhancing detection accuracy. For data lacking attribute la-
bels, a two-stage dual-head semi-supervised network is employed,
effectively combining losses from both labeled and unlabeled sam-
ples to outperform the baseline. Finally, an Adaptive Combination
Perturbation (ACP) algorithm is presented to dynamically optimize
the weighting of multiple pretrained models in the ensemble. In-
tegrating these components, the proposed system achieves a final
harmonic mean score of 69.94%.
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