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ABSTRACT
This technical report describes our submission system for Task 3 of
the DCASE 2025 Challenge: stereo sound event localization and
detection (SELD) in regular video content. We participate in the
audio-only track. Our system adopts a Multi-Level Feature Extrac-
tion Network, which consists of three main components. First, a
Feature Extraction Enhancement module(FEEM) is used to extract
fine-grained and meaningful features at multiple hierarchical levels,
improving the model’s ability to handle both sub-tasks: Direction
of Arrival (DOA) estimation and Sound Event Detection (SED).
Second, a Feature Fusion module(FFM) is employed to integrate
multi-level features, further enhancing the representational capac-
ity of the network. Finally, several data augmentation strategies are
applied to improve the robustness of the network. Experimental re-
sults on the DCASE 2025 Task 3 stereo SELD dataset demonstrate
the effectiveness of the proposed system.

Index Terms— Stereo sound event localization and
detection,Multi-Level Feature Extraction Network,Feature Ex-
traction Enhancement, Feature Fusion, data augmentation

1. INTRODUCTION

The objective of the Sound Event Localization and Detection
(SELD) task is to detect occurrences of sound events from spe-
cific target classes, track their temporal activity, and estimate their
directions-of-arrival (DOA) or positions. Given multichannel audio
input,a SELD system outputs a temporal activation track for each
of the target sound classes, along with one or more corresponding
spatial trajectories when the track indicates activity. This results
in a spatio-temporal characterization of the acoustic scene that can
be used in a wide range of machine cognition tasks,including smart
homes and audio surveillance[1, 2].

The Sound Event Localization and Detection (SELD) task was
first introduced in DCASE2019 Task3[3], focusing on scenarios
with a single, fixed-position sound source. It utilized multichan-
nel audio synthesized by convolving mono audio files with impulse
responses. Subsequent DCASE Challenges [4, 5, 6, 7, 8] gradually
introduced more complex environmental settings, including mov-
ing sound sources, diverse impulse responses, overlapping sound
events of the same class, lower signal-to-noise ratios (SNRs), real
spatial acoustic scenes, and the estimation of the distance to the
detected events.This year, the challenge tackles SELD using stereo
audio data, converted from the previously used four-channel audio

data[9],This change is intended to better reflect common audio and
media scenarios, but it also increases the task’s complexity due to
the reduction in available spatial cues.

In this report, we present a system developed for the stereo
SELD task in DCASE 2025 Task 3. To address the reduced spa-
tial information in stereo audio, we propose a Multi-Level Feature
Extraction Network that captures and integrates acoustic features
across different hierarchical levels. This design aims to improve
both Direction-of-Arrival estimation and Sound Event Detection.
We further enhance the system’s generalization through a set of
data augmentation strategies. Experimental results on the official
DCASE 2025 Stereo SELD dataset demonstrate the effectiveness
of our approach in challenging acoustic environments.

2. METHOD

We propose a Multi-Level Feature Extraction Network for stereo
sound event localization and detection. The input to the system is
stereo audio, from which log-mel spectrograms are extracted as in-
put features. We adopt the multi-ACCDOA representation[10].and
use a track-wise output format to simultaneously predict tempo-
ral activity and direction-of-arrival (DOA) trajectories for each
track. To address the track permutation problem during training,
we employ the Auxiliary Duplicating Permutation-Invariant Train-
ing (ADPIT) strategy.

Our proposed architecture consists of an initial feature extrac-
tion module, a Feature Extraction Enhancement Module (FEEM)
for multi-level fine-grained representation learning, a Feature Fu-
sion Module (FFM) for cross-level feature integration, and a Con-
former block for modeling long-range temporal context. Each
FEEM block is followed by a max-pooling layer, which down-
samples the feature map. Prior to fusion in the FFM, a 1 × 1 con-
volution is applied to unify the channel dimensions of multi-level
features. The output of the FFM is then passed to the Conformer
block, followed by two fully connected layers to produce the final
SELD predictions.The overall network architecture is shown in Fig-
ure 1.

2.1. Feature Extraction Module

In the initial feature extraction module, the input features
are first processed by a conventional convolutional layer con-
sisting of a standard convolution operation,followed by batch
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Figure 1: Overall architecture of the proposed network.

normalization[11]and a GELU activation function [12]. Max pool-
ing is then applied for initial downsampling. This module increases
the number of channels to obtain higher-dimensional feature repre-
sentations, facilitating subsequent, more refined feature extraction.

2.2. Feature Extraction Enhancement Module(FEEM)

To obtain more fine-grained and meaningful features, we introduce
a Feature Extraction Enhancement module (FEEM). This module
consists of two components: a Multi-Branch Feature Extraction
submodule and a Feature Enhancement submodule,as shown in
Fig. 2.

The Multi-Branch submodule extracts detailed and diverse fea-
tures through a parallel architecture consisting of three branches:
a local branch that captures fine-grained spatial details using small
non-overlapping patches, a global branch that aggregates broader
contextual information using larger patches, and a serial convolu-
tion branch that replaces large convolution kernels with three con-
secutive 3 × 3 convolutions for efficient local structure modeling.
The distinction between the local and global branches is controlled
by the patch size parameter p where p = 2 corresponds to lo-
cal features and p = 4 to global features.The input feature map
is first divided into non-overlapping p × p patches using Unfold
and reshape operations, then averaged along the channel dimension
to obtain spatial tokens. These tokens are passed through a feed-
forward network (FFN), followed by an activation function to gen-
erate spatial weights. The resulting weighted features are refined
through a feature selection mechanism[13]that selects task-relevant
tokens and channels to improve representation quality. The out-

Figure 2: Structure of the Feature Extraction Enhancement Module
(FEEM).

Figure 3: Structure of the Feature Fusion Module (FFM).

puts of the three branches are summed along the channel dimension
to form a unified representation, which is then processed by the
Feature Enhancement submodule.This submodule applies attention
mechanisms,including channel attention and spatial attention[14] to
highlight important feature dimensions and regions. Finally, the en-
hanced features are passed through dropout, ReLU activation, and
batch normalization to produce the final refined output.

2.3. Feature Fusion module(FFM)

To integrate detailed information across different levels and con-
struct a more robust feature representation, we employ a Feature
Fusion Module (FFM) that effectively combines multi-level fea-
tures to enhance overall representational capacity. This module in-
corporates a global attention mechanism to adaptively reweight and
reorganize features from various levels, emphasizing key features
while suppressing irrelevant information, as illustrated in Fig. 3.

2.4. Data Augmentation

To increase the diversity of our dataset, we applied frequency shift-
ing [15] and synthesized 40 hours of multi-channel audio using the
Spatial Scaper library[16, 17], which was then segmented into 5-
second stereo audio clips.
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Table 1: Performance comparison on the development set.

Methods F1 score ↑ DOAE ↓ RDE ↓

Baseline 2025 22.8% 24.5◦ 41%
Ours’ system 37.1% 18.3◦ 30%

3. EXPERIMENTS

In this section, we show our results on the development dataset.

3.1. Experimental settings

In our experiments, we used stereo audio. The sampling rate was
set to 24 kHz, the STFT frame length was 40 ms, and the hop length
was 20 ms. We used 128 mel filters. The input length was 5 sec-
onds, or 250 frames. The model was trained with the Adam opti-
mizer for 200 epochs, with a learning rate set to 0.001.

We evaluated our SELD system using official metrics, including
the location-dependent F1 score, direction-of-arrival error (DOAE),
and relative distance error (RDE).

3.2. Experimental result

Table 1 presents the performance of our proposed methods on the
development set. As shown, our approach significantly outperforms
the baseline in terms of the location-dependent F1 score , as well as
the DOA error (DOAE) and relative distance error (RDE) metrics.

4. CONCLUSION

We presented a stereo sound event localization and detection
(SELD) system developed for Task 3 of the DCASE 2025 Chal-
lenge. Our system leverages a Multi-Level Feature Extraction Net-
work that integrates a Feature Extraction Enhancement Module
(FEEM) and a Feature Fusion Module (FFM) to extract and com-
bine fine-grained, hierarchical features for improved performance in
both sound event detection and direction-of-arrival (DOA) estima-
tion. In addition,we apply data augmentation methods to enhance
the model’s robustness . Experimental results demonstrate that our
system significantly outperforms the baseline across multiple met-
rics.
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