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ABSTRACT

In this work, we present our submission system for DCASE
2025 Task4 on Spatial semantic segmentation of sound scenes
(S5).Among them, we introduce the audio tagging (AT) and label-
query source separation (LSS) systems built on the fine-tuned M2D
and the modified version of ResUnet. By introducing the bidirec-
tional recurrent neural network (DPRNN) module into ResUNet
and improving the Feature-wise Linear Modulation (FiLM) mech-
anism, the model’s ability to capture long-term dependent features
in spatial audio and the flexibility of dynamic feature adjustment
are enhanced. Experimental results show that the improved sys-
tem outperforms the baseline system in class-aware evaluation met-
rics (CA-SDRi, CA-SI-SDRi), verifying the effectiveness of the
method.

Index Terms— M2D, ResUNet, DPRNN

1. INTRODUCTION

The development of immersive communication technologies has
driven the upgrading of requirements for spatial sound scene
analysis[1][2][3]. The rapid advancement of deep learning has also
provided support for improving audio processing accuracy, prompt-
ing people to pursue precise recognition and separation of sound
events in spatial sound scenes to understand complex acoustic en-
vironments. Sound event detection largely relies on neural network
architectures such as convolutional neural networks (CNN), convo-
lutional recurrent neural networks (CRNN), and Transformer, while
spatial sound scene separation mostly depends on CRNN and Trans-
former architectures, with some studies also using U-net and its
variants. DCASE 2025 Task4 requires separating single-channel
dry sound signals from multi-channel mixed audio and predicting
their category labels, which is crucial for achieving object-based
audio coding (e.g., MASA, object audio). The baseline system im-
plements the task through a two-stage framework: The first stage
uses a fine-tuned M2D model for audio tagging; the second stage
achieves label-query source separation through the ResUNet family
of models.

Separating sound mixtures into sources, known as source sep-
aration (SS), and predicting audio class labels, referred to as audio
tagging (AT) or sound event detection (SED), are active areas of re-
search, with their combination also being explored. In the baselines
of DCASE Challenge Task 4 in 2020 and 2021, SS was used as a
preprocessing step to improve the results of SED[4]. Most of the
current related tasks mainly aim to improve one or both of SS and

AT, and evaluate their performances separately at the same time.
Therefore, the connection between the separated sources and the
predicted labels has not been thoroughly evaluated. However, in
Task S5, the separated sources are identified by their labels. That
is, Task S5 requires meeting both the separation accuracy and label
consistency.

An M2D-based AT model is a fine-tuned M2D[5] model on
AudioSet[6] with 527 classes. M2D is a self-supervised learning
(SSL) foundation model that is pre-trained with M2D’s masked
prediction-based objective using only audio samples from Au-
dioSet. In this paper, for the M2D model, we introduce a novel
Adapter fine-tuning method by inserting an Adapter into the feed-
forward network of M2D. By modifying the pre-trained structure,
this approach enhances the model’s ability to capture comprehen-
sive feature information and enables effective fine-tuning.

The second stage of the original system takes two forms: The
first is a single-input single-output ResUNet, where the input layer
is adjusted to accept an M-channel mixed spectrogram, and the out-
put layer is modified to predict an M-channel magnitude mask and
phase residual applied to the input spectrogram. A 1×1 convolu-
tional layer is then used to generate the single-channel spectrogram
of the target source. The other form is a single-input multi-output
variant named ResUNetk, which differs from the first form in that
it outputs KmaxN channels of magnitude masks and phase residu-
als applied to the input mixed spectrogram. Since the convolutional
layers in the original model cannot effectively extract dependencies
between frequency bins or time frames, we integrate a bidirectional
recurrent neural network (DPRNN) into ResUNet and improve the
Film conditioning.

2. METHODS

2.1. Adapter

The baseline method of DCASE 2025 Task 4, for the AT and LSS
tasks, uses the fine-tuned Masked Modeling Duo (M2D) and a mod-
ified version of ResUnet. The audio representations extracted by
M2D already reach the state-of-the-art level. The M2D model used
in the Baseline is fine-tuned on AudioSet, and we use a more ad-
vanced fine-tuning method on this basis.

Specifically, we use Adapter fine-tuning, which adopts an in-
verted bottleneck structure to project the input features into a high-
dimensional space, and uses the ReLU function to process the pro-
jection to extract high-richness information, and then restores it to
the original dimension. This high-richness information is a mixture
that not only contains the time-frequency patterns of sound events
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but also contains the adjacent information of different events. The
structure of the Adapter can be represented as follows:

x′
ℓ = LN (attn + xℓ−1) (1)

x′′
ℓ = ReLU

(
x′
ℓ ·Wup

)
·Wdown (2)

xℓ = LN
(
x′′
ℓ + x′

ℓ

)
(3)

where, xℓ−1 ∈ RT×D is the input of the BEATs block from
the ℓ − 1 layer, x′

ℓ is the input of the M3A-FFN in the ℓ layer, x′′
ℓ

are the outputs of the Adapter, attn ∈ RT×D is the output of the
Multi-Head Self-Attention, Wdown and Wup are the parameters of
the down-projection layer and up-projection layer respectively, xℓ

is the output from the ℓ layer.
By inserting this Adapter into M2D and modifying the pre-

trained structure, we enhance its ability to capture comprehensive
feature information and address the multi-scene nature of the het-
erogeneous dataset SED. Effective fine-tuning of the model can im-
prove its robustness in multi-scene applications.

2.2. FiLM conditioning DPRNN

The FiLM used in the baseline only performs multiplication with β.
On this basis, we introduce element-wise multiplication γ, enabling
the model to adjust feature distributions more flexibly[7].To bridge
the text encoder and the separation model, use a FiLm layer after
each ConvBlock deployed in the ResUNet. We use H ∈ Rm×h×w

to denote the output feature map produced by ConvBlock l with
m channels, here h and w are the height and width of the feature
map H(l), respectively. The modulation parameters are applied per
feature map Hi with the FiLm layer as follows:

FiLM(H | γi, βi) = γiHi + β (4)

where Hi ∈ Rh×w, and γ, β ∈ Rm are the modulation pa-
rameters from g(.), i.e., (γ, β) = g(eq), such that g(.) is a neural
network and eq is the text embedding obtained from the text en-
coder. In this work, we model g(·) with two fully connected layers
followed by ReLU activation, which is jointly trained with the Re-
sUNet separation model.

To achieve dynamic feature extraction, we insert a DPRNN
module into the encoder-decoder intermediate layer (bottleneck
layer) of the baseline ResUNet[8]. The specific structure is as fol-
lows: The DPRNN module consists of a bidirectional LSTM in the
time dimension and a bidirectional LSTM in the frequency dimen-
sion. After the input feature map is processed in the time dimen-
sion, it is recursively processed along the frequency dimension and
finally projected back to the original number of channels through
a 1×1 convolution. The input x has the shape B: Batch Size, C:
Channels, T: Time Steps, F: Frequency Bins.

3. EXPERIMENT

3.1. Dataset

This task is based on DCASE2025Task4Dataset. This dataset was
recorded and designed for DCASE 2025 Challenge Task 4: Spatial
Semantic Segmentation of Sound Scenes (S5). The dataset con-
tains 18 classes of sound events recorded in an anechoic chamber
(ASE1K) and room impulse responses (RIRs) recorded using first-
order ambisonics (FOA) microphones. All of the acoustic data and

Table 1: Performance of the improved system
system model CA-SDRi mean Accuracy

ResUNet Baselin 11.032 59.80%

ResUNet Ours 11.073 62.67%

ResUNetk Baseline 11.088 59.80%

ResUNetk Ours 11.783 65.47%

RIR formats included in this dataset are 32kHz/16bit. In the follow-
ing part of this description, we will briefly summarize the record-
ing of sound events and RIR. ASE1K is a one-shot recording of
18 classes of sound events recorded in an anechoic chamber. The
recording was made using three cardioid microphones to capture the
sound events from the left, front and right, and one omnidirectional
microphone to capture the sound from above. In the S5 task, it is
assumed that you will simply select a single channel (e.g. ch=3)
from these and use it as a monaural sound event. For each class,
50 to 80 events were recorded, and a total of over 1K samples were
recorded.

The RIR dataset is made up of RIRs recorded in six environ-
ments for DCASE2025 Task4, combined with RIRs that have al-
ready been released as the FOA-MEIR dataset. All recordings were
made using the same FOA Microphone (Sennheiser Ambeo VR
Mic). RIR recordings were made from multiple locations in each
environment, and these are compiled in sofa file format.

This dataset also includes noise recordings in the FOA for-
mat. All of noise recordings are all the same as those included in
FOA-MEIR. The recordings were made using the same FOA mi-
crophones as those used in RIR.

During evaluation, systems will undergo assessment using la-
bels of varying granularity to gain a comprehensive understanding
of their performance and assess their adaptability across diverse
applications. Given that different datasets feature distinct target
classes, it is possible that sound labels present in one dataset may
not be annotated in another. As a result, systems must be capable
of handling potential missing target labels during training. Further-
more, SED system is required to operate without knowledge of the
origin of the audio clips during evaluation, emphasizing the need
for robust and generalized performance across varied scenarios.

3.2. Experiment setup

We train the M2D model for 800 epochs and the ResUNet for 80
epoch. The batch size is set to 4. Each training session is deployed
on the NVIDIA RTX 4090 and lasts 200 hours.

3.3. Results and submissions

Table 1 shows the performance of the commit system. The base-
line model initially used both the M2D and ResUNet models.Our
system improves the fine-tuning method by using a self-designed
Adapter for the M2D module, and modifies the FiLM conditioning
and adds the DPRNN module for the ResUNet part. Eventually, it
shows significant performance improvements. For ResUNet, we in-
crease the CA-SDRi from 11.032 to 11.073 and the mean Accuracy
from 59.80% to 62.67%; for ResUNetK, we train with a smaller
number of epochs, raising the CA-SDRi from 11.088 to 11.783 and
the mean Accuracy from 59.80% to 65.47%.
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4. CONCLUSION

In this study, we significantly improved the performance of fea-
ture extraction and spatial acoustic scene semantic segmentation
by adding a special Adapter to M2D to modify the fine-tuning
method, as well as introducing the DPRNN module and improving
the FiLM conditioning mechanism in ResUNet. Our system out-
performs the baseline in terms of both the CA-SDRi and Accuracy
metrics, achieving 11.073 and 62.67% on the ResUNet system, and
11.783 and 65.47% on ResUNetK.
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