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ABSTRACT

Audio question answering (AQA) requires models to understand
acoustic content and perform complex reasoning. Current models
struggle with dataset imbalances and unstable training dynamics.
This work combines curriculum learning with statistical data bal-
ancing to address these challenges. The method labels question
difficulty using language models, then trains progressively from
easy to hard examples. Statistical filtering removes overrepresented
audio categories, and guided decoding constrains outputs to valid
multiple-choice formats. Experiments on the DCASE 2025 training
set and five additional public datasets show that data curation im-
proves accuracy by 19.2% over baseline models, achieving 64.2%
on the DCASE 2025 benchmark.

1. INTRODUCTION

Audio Question Answering (AQA) represents a fundamental chal-
lenge at the intersection of acoustic understanding and natural
language processing. Unlike simple sound classification, AQA
requires models to comprehend complex acoustic scenes, identify
temporal relationships between sounds, and generate coherent an-
swers to diverse questions [1, 2, 3]. Where earlier AQA models
focused on binary tasks or limited label sets [1, 4], later models
contain answer generation capabilities in natural language beyond
strict answer sets. Some tasks require text generation metrics to
evaluate the output of the model, while other tasks require selecting
the correct answer from provided options, which makes answers
verifiable against actual answers.

Audio-language modeling faces limited diversity and quality
of training data [5]. Many models train on overlapping datasets,
and this redundancy also appears in benchmarks in the form of
data contamination, which contributes to homogeneous dataset
landscapes. This limits the generalization and robustness of audio-
language models. Analysis reveals that audio datasets suffer from
severe class imbalances. Certain sound categories show dramatic
over-representation. This leads to models that perform well on
common sounds but fail on rare acoustic events.

While traditional approaches to audio question answering have
relied on supervised learning, recent advances have explored rein-
forcement learning techniques [6]. Reinforcement learning offers
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potential advantages for complex reasoning tasks but introduces
training instabilities. This work investigates how curriculum learn-
ing and guided decoding can stabilize reinforcement learning for
audio understanding.

This work tests the following hypotheses for improving audio
question answering:

1. Curriculum-guided reinforcement learning: The model
trains on easy examples first to establish reliable reward sig-
nals. Difficult samples enter training progressively. This
method stabilizes learning dynamics.

2. Statistical data balancing: Statistical thresholds identify
and remove overrepresented categories, which balances the
training datasets.

3. Guided decoding: Regular expressions constrain generation
to valid multiple-choice answers (A, B, C, D).

4. Hybrid training: The model trains with Supervised Fine-
Tuning (SFT) to provide stable initialization. Afterwards, the
training paradigm uses Group Relative Policy Optimization
(GRPO) through reward-based learning.

Experiments on six datasets validate the approach. Data qual-
ity determines performance more than algorithmic complexity. The
method achieves 64.2% accuracy on DCASE 2025 Task 5: Audio
Question Answering.

2. BACKGROUND

2.1. Audio-Language Models

Large-scale audio-language models transform audio understanding.
Early approaches combine audio encoder models as encoder with
language models as decoder [7, 8]. Here, the language model’s
performance is dependent on the quality of the features it receives
from the audio encoder. Qwen2-Audio [9] and other recent mod-
els address this through unified architectures. The model processes
a combination of speech, audio, and environmental sounds with a
Whisper-large-v3 encoder and a Qwen-7B language model, and is
used in work as a foundational model.

Examples of training strategies in the audio-language domain
include: temporal progression from 30-second to 5-minute con-
texts that enable 3B models to outperform larger architectures [10].
Perception-before-understanding improves comprehension [11].
Multi-phase thinking, to allow planning, captioning, reasoning, and
summarization [12].
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2.2. Audio Question Answering Datasets

Challenge rules from the DCASE Challenge restrict dataset selec-
tion to 20 approved sources. Many datasets target other tasks such
as audio captioning and audio generation rather than question an-
swering. This work selects only datasets with multiple-choice for-
mats or relevant question-answer pairs. Five extra datasets are used
to train the models, next to the training set of the challenge:

• AVQA [13]: Contains 56,369 question-answer pairs from VG-
GSound (originally 57,335 before YouTube deletions). Ques-
tions span eight semantic types. The dataset includes audio and
visual information. AVQA requires models to discover causal
correlations between modalities.

• ClothoAQA [14]: Contains 35,838 questions from 1,991 en-
vironmental audio samples (15-30 seconds). Each audio has 6
questions with 3 annotator responses per question. Four ques-
tions require binary answers; two require single words. Differ-
ent annotators create questions and answers.

• CompA-Order [15]: Contains 900 examples for composi-
tional reasoning. The dataset tests temporal understanding
between sounds.

• TACOS [16]: Contains 12k audio recordings with 61,137
temporally-aligned captions. The dataset trains temporal rea-
soning.

• AudSem [17]: Synthesized from YouTube closed captions.
Contains 210,288 multiple-choice questions across diverse
acoustic scenes and events.

Evaluation Datasets. The DCASE 2025 Challenge provides
three specialized evaluation datasets. Part 1 (Bioacoustics QA)
contains 0.7K training and 0.2K development examples from 31
marine mammal species with sample rates from 600 Hz to 160 kHz
from the Watkins Marine Mammal Sound Database [18]. Audio du-
ration spans 0.4 to 625 seconds. Part 2 (Temporal Soundscapes
QA) includes 1K training and 0.6K development examples cover-
ing 26 sound classes. The 10-second mono audio files (32-48 kHz)
test temporal reasoning about sound sequences, timestamps, and
durations. Part 2 sources include NIGENS general sound events
database [19], L3DAS23 Challenge [20], and TAU Spatial Sound
Events 2019 [21]. Part 3 (Complex QA) contains 6.4K training and
1.6K development examples from AudioSet [22] and Mira datasets
[23]. Each 10-second audio clip (16 kHz) requires multi-faceted
reasoning across temporal, acoustic, and contextual dimensions.

3. METHOD

The method combines four components: (1) Curriculum-based fil-
tering controls learning progression. (2) Statistical balancing en-
sures dataset diversity. (3) Hybrid training combines supervised
fine-tuning with reinforcement learning. (4) Guided decoding for
structuring output generation during GRPO training.

3.1. Curriculum-Based Data Filtering

Traditional curation removes difficult examples as noise. These
samples provide valuable signals when introduced properly. Cur-
riculum learning trains models on easy examples before difficult
ones [24, 25]. To be able to get a subset of the dataset of easy
examples to train the model on first, an LLM is used to label the
dataset. Here, Microsoft’s Phi-4-mini-instruct [26] scores question

difficulty from 0.0 (very easy) to 1.0 (very difficult). For each ex-
ample (ai, qi, ci, yi) in the dataset, the model evaluates: question
complexity, required knowledge depth, ambiguity level, and con-
cept count.

After labeling, the samples are filtered by difficulty. Easy
samples (difficulty < 0.3) establish reliable GRPO reward signals,
which prevents instability from ambiguous examples. Later stages
incorporate all samples or focus on hard examples (difficulty >
0.7). Best results come from training on easy samples, then the full
dataset.

3.2. Statistical Category Balancing

Audio datasets exhibit severe category imbalances. Dataset curation
addresses class imbalances in audio datasets. AudioSet contains
527 classes with severe imbalances: Music and Speech dominate
[22]. A language model assesses caption quality against a descrip-
tion of human standards, where low-scoring captions get filtered
[27]. Analysis identifies 24 audio categories: speech (conversation
and monologue), music, nature sounds, urban sounds, transporta-
tion, and specialized domains. Music and speech dominate with
thousands of examples. Specialized sounds have dozens.

Phi-4-mini-instruct [26] categorizes audio questions into 24
types. The model infers categories from question content using
256-sample batches. In total, we have 365,479 sounds across 24
audio categories.

In the filtering process, statistical thresholding balances cate-
gory distributions. The method computes mean count µ across cat-
egories, and categories with count ci > θ · µ get filtered. Opti-
mal performance occurs at θ = 0.7. This threshold removes ex-
treme over-representation of human sounds and mixed environment
sounds while maintaining sufficient examples. The approach pre-
vents overfitting to dominant categories. In Figure 1, the audio cat-
egories are visualized with their respective count and the cut-off
threshold. The figure shows that human sounds and mixed environ-
ment sounds are over-represented in the training sets.

3.3. Hybrid SFT-GRPO Training Pipeline

The training pipeline combines supervised fine-tuning and rein-
forcement learning. Group Relative Policy Optimization (GRPO)
[28] is a training technique introduced recently for reward-based
optimization in finetuning models such as DeepSeek R1 [28] and
Qwen2.5 [29]. Supervised Fine-Tuning (SFT) works well as a
warm-up stage before GRPO, to accustom the model to the pro-
posed formatting and style. Qwen2-Audio serves as the base model.

Stage 1: Supervised Fine-Tuning (SFT). The method fine-
tunes Qwen2-Audio-7B-Instruct using cross-entropy loss. Low-
Rank Adaptation (LoRA) [30] targets query and value projections
with rank r = 8, scaling factor α = 16, and dropout 0.05. Train-
ing uses AdamW optimizer [31], learning rate 2 × 10−5, cosine
annealing and gradient clipping at 0.5. Training runs 1-3 epochs.

Stage 2: Group Relative Policy Optimization (GRPO).
GRPO optimizes performance through reinforcement learning with
verifiable rewards (RLVR) after SFT convergence. The reward
function combines accuracy and format validation:

R(y, ŷ) = Racc(y, ŷ) +Rformat(ŷ)

Racc awards 0.5 for full match, 0.25 for matching the answer
letter (e.g. A, B, C, or D), and 0.25 for remaining content. Rformat

awards 0.5 for correct format. GRPO uses β = 0.01 with a warmup
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Figure 1: Distribution of audio categories in the training sets. Dotted lines represent the threshold during diversity filtering, with the cut-offs
being 0.5σ and 0.7σ above the mean.

of 50 steps, 4 generations per example, for 1-2 epochs, depending
on the configuration. Dropout is disabled and the learning rate is
1× 10−6 with AdamW with cosine annealing.

Stage 3: Multi-Stage Pipeline. Effective training chains three
stages: (1) SFT on all datasets with LoRA. (2) GRPO on easy sam-
ples with diversity balancing. (3) GRPO on the full dataset with di-
versity balancing. Each stage builds on previous checkpoints. The
pipeline combines SFT initialization with progressive GRPO im-
provements.

3.4. Guided Decoding with Constrained Outputs

Models must produce valid multiple-choice answers. Guided de-
coding constrains a language model’s output to ensure it conforms
to a specific structure, using a regular expression [32]. This is
achieved by compiling the desired structure into a finite state ma-
chine, which can be visualized as a graph where each node repre-
sents a valid state in the grammar. At each step of text generation,
the model can only transition to a new state (i.e., generate a next
token) if there is a valid edge from its current position in the graph.
This process works by creating a “logit mask” that effectively sets
the probability of all invalid next tokens to zero, forcing the model
to choose only from the tokens that keep the output syntactically
correct according to the graph’s rules. Constrained decoding en-
sures correct output format during generation.

Regular expressions constrain each decoding step. Valid
paths correspond to answers A, B, C, or D. The regular expres-
sion ˆ<think>.*?</think>\s*<answer>(A|B|C|D).*
</answer>$ restricts the model on generation for choosing an
answer, while also allowing for reasoning. This approach of guided
decoding eliminates post-processing since mathematical constraints
force selection from four answer choices.

Evaluation uses the DCASE 2025 evaluation audio question-
answering datasets. Experiments compare against baseline models
and conduct ablation studies. In total, 22 experimental runs are
conducted comparing different training strategies.

3.5. Experimental Setup

Datasets: AVQA (56,369 QA pairs), ClothoAQA (35,838 ques-
tions), CompA-Order (900 examples), TACOS (61,137 captions),
and AudSem (210,288 questions). Baselines: Qwen2-Audio,
AudioFlamingo 2, and Gemini-2.0-Flash. Metrics: Top-1 accu-
racy with exact match evaluation. Results report overall accuracy
and part-wise performance (Part 1: bioacoustics, Part 2: tempo-
ral/counting, Part 3: complex reasoning).

4. RESULTS

Table 1 presents the evaluation results on the DCASE 2025 test set
submitted to the DCASE Challenge. The four training configura-
tions are:

• SFT only: A baseline model trained with supervised fine-
tuning on all datasets for one epoch using LoRA optimization
with rank 8 and learning rate 2× 10−5.

• GRPO + Curriculum: A three-stage pipeline that first per-
forms SFT, then GRPO training on easy samples (difficulty
< 0.3) with diversity balancing at threshold 0.5, followed by
GRPO on the full DCASE2025 training dataset for 5 epochs
with guided decoding constraints.

• GRPO + Div. (θ = 0.7): Combines 3-epoch SFT training with
aggressive diversity filtering that removes overrepresented cat-
egories when their count exceeds 0.7 times the mean category
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Model Part 1 Part 2 Part 3 Total

Baseline Models
Qwen2-Audio-7B 30.0% 39.2% 49.6% 45.0%
AudioFlamingo2 53.9% 31.7% 49.5% 45.7%
Gemini-2.0-Flash 42.0% 46.3% 56.6% 52.5%

Our Methods
SFT only 62.1% 42.2% 72.5% 64.1%
GRPO + Curriculum 67.0% 38.3% 72.8% 63.7%
GRPO + Div. (θ = 0.7) 65.6% 41.4% 72.6% 64.2%
Ensemble (11 models) 75.0% 42.2% 68.3% 62.5%

Table 1: Accuracy on the DCASE 2025 evaluation set. Best results
per column in bold.

count, followed by two GRPO stages with the same diversity
threshold.

• Ensemble: A majority voting ensemble combining all three
individual models plus eight additional variants trained with
different curriculum strategies and diversity thresholds.

Part 2 (temporal and counting tasks) remains the most challeng-
ing with accuracies between 38-42%, which indicates fundamen-
tal difficulties in temporal reasoning within audio-language models.
Part 1 (bioacoustics) and Part 3 (complex reasoning) show stronger
performance, achieving 75.0% and 72.8% in the best scoring mod-
els respectively.

4.1. Ablation of Model Components

Configuration Accuracy

Training Paradigm
Pre-trained Qwen2-Audio (no fine-tuning) 45.0%
SFT only (single dataset) 64.0%
SFT only (all datasets) 63.9%
SFT + GRPO 63.1%

Diversity Balancing
No diversity filtering 63.1%
Diversity θ = 0.3 63.2%
Diversity θ = 0.7 64.2%

Curriculum Learning
No curriculum 63.1%
Easy samples (difficulty < 0.2) 64.2%
Hard samples (difficulty > 0.7) 63.1%

Additional Techniques
LoRA in GRPO 62.3%
Guided decoding 63.7%

Table 2: Ablation study results showing the impact of different com-
ponents on DCASE 2025 test set accuracy. All ablations are built
upon the SFT+GRPO training pipeline, which serves as our internal
baseline (63.1%).

Table 2 summarizes an ablation study isolating the impact of
different training strategies and data curation techniques.

Supervised fine-tuning with LoRA optimization forms the
foundation of this approach. The pre-trained Qwen2-Audio model

achieves 45.0% accuracy on DCASE 2025. SFT with LoRA on a
single dataset increases accuracy to 64.0%. Expanding to all six
datasets yields 63.9% accuracy, which indicates dataset diversity
alone provides minimal improvement without proper curation.

The multi-stage SFT+GRPO approach maintains 63.1% accu-
racy, showing modest benefits compared to SFT alone. Notably, the
ablation results reveal that GRPO does not outperform SFT when
used alone, suggesting that reinforcement learning’s effectiveness is
conditional on data curation techniques that provide cleaner, more
stable reward signals. Curriculum learning on easier examples (dif-
ficulty < 0.2) achieves 64.2%, while focusing on hard examples
(difficulty > 0.7) reduces performance to 63.1%.

Diversity balancing produces the most significant improve-
ments. Conservative filtering (θ = 0.3) yields 63.2% accuracy,
while aggressive filtering (θ = 0.7) achieves the best single-model
result of 64.2%. This confirms that removing overrepresented au-
dio categories contributes more than simply adding data. Guided
decoding experiments show modest improvement, as the model
naturally learns to generate well-formatted outputs during training.

4.2. Reasoning Phase

Incorporating a reasoning phase is also tried, where models gener-
ate intermediate reasoning steps before producing final answers. It
yields significantly lower results (46.2-51.6% accuracy) compared
to the best model’s 64.2%. This limitation stems from dataset con-
straints: only AudSem among the six datasets includes thinking
annotations. While GRPO theoretically enables thinking across
all datasets by evaluating only final answers, poor SFT initial-
ization from limited thinking examples prevents effective learn-
ing. Thinking-based approaches require comprehensive annotated
reasoning across diverse datasets to compete with direct answer
generation methods.

5. CONCLUSION

The method makes three contributions: (1) Statistical diversity bal-
ancing with threshold 0.7 addresses dataset imbalances. (2) Cur-
riculum learning improves specific question types without signif-
icant overall gains. (3) Supervised fine-tuning with LoRA opti-
mization delivers better performance than reinforcement learning
alone, with SFT outperforming the SFT+GRPO approach unless
combined with proper data curation techniques.

GRPO limitations highlight fundamental differences between
audio question answering and text generation tasks. Future work
requires alternative reward formulations or denser feedback mech-
anisms. The success of diversity filtering motivates more sophisti-
cated curation approaches using learned representations instead of
predefined categories.

Dataset quality matters more than algorithmic complexity in
audio question answering. Data curation outperforms complex
algorithms for audio question answering. Diversity filtering pro-
vides the largest performance gains, achieving 64.2% accuracy
on DCASE 2025 Task 5. Diversity filtering applies to any audio-
language dataset with minimal computational overhead. Balanced
acoustic representation ensures more fair real-world performance
across sound categories.
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