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ABSTRACT

The DCASE2025 Challenge Task 4 - Spatial Semantic Segmenta-
tion of Sound Scenes (S5) challenges participants to separate a set
of mixed sound events (sampled from 18 targeted sound events)
to individual sound-event signals. The baseline system provided
by the challenge organizors first performs audio tagging to iden-
tify the sound events existed in the mixture, and then conducts
label-queried target sound extraction (TSE) to extract the signal
of each identified sound event. Building on the baseline system,
we propose to improve the label-queried TSE component by us-
ing a novel model named Target Sound Extraction TF-GridNet
(TS-TFGridNet), leveraging the strong capability of TF-GridNet at
speech separation for TSE. TS-TFGridNet concatenates audio and
sound-class embeddings along the frequency or feature dimension,
thereby conditioning TF-GridNet to perform TSE. Clear improve-
ment is observed over the baseline system.

Index Terms— Target sound extraction, TF-GridNet.

1. INTRODUCTION

In recent years, simultaneously separating the distinct sound
sources from their mixtures and tagging their corresponding sound
classes have gained significant attention. Systems like the univer-
sal sound separation (USS) model [1] has demonstrated strong per-
formance and potential to solve the two tasks together. Building
upon such advances, the DCASE2025 Challenge introduces the S5
task [2]], focusing on separating reverberant multi-channel spatial
audio mixtures into monaural sound sources, and at the same time
predicting their associated class labels. The S5 baseline system [3]]
combines two key components: the M2D model [4] for audio tag-
ging, and a ResUNet model, adapted based on [3], for label-queried
TSE.

Considering that TF-GridNet [|6,|7] has shown strong perfor-
mance and potential in speech separation and that ResUNet-style
models are known to have much weaker separation capability than
dual-path models such as TF-GridNet [7]], we propose to replace the
ResUNet module with the more advanced TF-GridNet model and
adapt TF-GridNet for label-queried TSE. We realize the adaption
by concatenating the audio embedding in TF-GridNet with trainable
sound-class embeddings along the frequency or feature dimension.
The resulting model, named Target Sound Extraction TF-GridNet
(TS-TFGridNet), exhibits clearly better TSE performance over the
baseline model.
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Figure 1: Overview of proposed system.

2. PROPOSED METHOD

Building on the baseline system, our proposed system replaces
the default ResUNet model in the baseline with our proposed TS-
TFGridNet model. See Fig. [T] for an illustration. Given an input
mixture Sy € RMXN with M denoting the number of micro-
phones and N the number of time-domain samples, the M2D-based
audio tagging (AT) system [[4] first identifies all the sound events ex-
isitng in the mixture, outputing a multi-hot vector denoting whether
each sound event exists in the mixture. The multi-hot vector is then
converted into a set of one-hot vectors (é1, - - ., €K,,0. )» With Kpnaq
denoting the number of idenfied sound events. Each one-hot vector
is then utilized as an extra input (besides the input mixture signal)
to condition TS-TFGridNet for TSE.

Our proposed TS-TFGridNet is illustrated in Fig. and
Given a total of C' considered sound-event classes, we start with
initializing an embedding matrix with size C' X G to derive a
class embedding of dimension G for each class ¢ € {1,...,C}.
This class embedding then undergoes processing through fully-
connected blocks, which consist of multiple linear layers inter-
leaved with non-linear activations. To facilitate diverse concate-
nation strategies with audio embeddings, we perform dimension
matching, which involves replicating the processed class embed-
ding to align its dimension with that of the audio embedding. The
audio embedding has a dimension of D X T' x F' and is obtained
by applying 2D convolution and global layer normalization to the
input mixture, which, after we apply short-time Fourier transform
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(a) Architecture of TS-TFGridNet v1.
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(b) Architecture of TS-TFGridNet v2.

Figure 2: Various variants of proposed TS-TFGridNet architectures.

(STFT), has a tensor shape of 2M x T' x F', with T" denoting the
number of frames, F' the number of frequency bins, and 2 meaning
stacking the real and imaginary (RI) components.

In TS-TFGridNet v1 (shown in Fig. 2a), we concatenate the
processed class embedding with the audio embedding along the
frequency dimension. This combined representation is then fed
into secondary fully-connected blocks, which mirror the architec-
ture of the initial embedding processing blocks. In TS-TFGridNet
v2 (shown in Fig. 2b), the processed class embedding is concate-
nated with the audio embedding along the feature dimension. Sim-
ilarly to TS-TFGridNet v1, this combined representation is subse-
quently passed into secondary fully-connected blocks that replicate
the architecture of the initial embedding processing blocks. The in-
tegrated features then proceed through the dual-path block in the
standard TF-GridNet [7] to predict the RI components of the target
signal via complex spectral mapping [8]. Finally, the time-domain
signal is obtained by applying inverse STFT (iSTFT) to the pre-
dicted RI components, and the loss function is the same as the time-
domain CA-SDRIi loss [2] proposed in the challenge baseline.

3. EXPERIMENTAL SETUP

We valudate TS-TFGridNet based on the DCASE2025 S5 dataset
[2]] provided by the challenge organizors. This section describes the
dataset and system configurations.

Each input mixture contains up to three target sound events, and
multiple non-target sound events and non-directional background
noises. All the mixtures are sampled at 32 kHz. The dry sound
source signals are sourced from [9]], which contains 20 types of
sound events. However, the “music” and “singing” classes are ex-
cluded, and therefore there are 18 target sound events to extract.
Room impulse responses and noise data are obtained from [[10].

The hyper-parameters of TS-TFGridNet v1 and v2 are exactly
the same and are listed in Table[T] The STFT window and hop sizes
are respectively 16 and 8 ms. All the training configurations are the
same as the baseline model. Following the challenge setup [2]], we
use CA-SDRI as the evaluation metric.

4. EVALUATION RESULTS

Based on the M2D audio tagging model 3], which has an accuracy
of 59.8% for audio tagging, we report the TSE performance of TS-

TFGridNet in Table2] The results demonstrate a substantial perfor-
mance gain over the baseline ResUNet model. TS-TFGridNet v1
reaches a CA-SDRi of 14.2 dB, representing a 28.4% improvement
over ResUNet, while TS-TFGridNet v2 obtaines a slightly-worse
CA-SDRi of 14.0 dB, on the validation set. These results confirm
the effectiveness of the proposed TS-TFGridNet model.

Table 1: Model configurations. Except M, G and C, the other
hyper-parameters are defined in the same way as [[7].

Symbol Description Value
M Number of input microphones 4
G Dimension of class embedding 512
C Total number of classes 18
D Dimension for each T-F unit embedding 48
B Number of TF blocks 2
1 Kernel size for Unfold and DeconvlD 4
J Stride size for Unfold and Deconv1D 1
Total number of hidden units of BLSTMs
H . . 128
in each direction

L Total number of heads in self-attention 4
B Output channels in point-wise Conv2D 256

to obtain key and query tensors in self-attention

Table 2: Comparison with challenge baseline ResUNet [3].

TSE Model CA-SDRi (dB)  Improvement
ResUNet [3] 11.0 -
TS-TFGridNet v1 14.2 +28.4%
TS-TFGridNet v2 14.0 +27.0%

5. CONCLUSION

We have proposed TS-TFGridNet, which adapts TF-GridNet for
label-queried TSE by concatenating class embedding with audio
embedding along the frequency or feature dimension. Evaluation
results on the development dataset of the DCASE2025 Challenge
Task 4 show the effectiveness of TS-TFGridNet.
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