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ABSTRACT

This technical report presents our system for Task 3 of the DCASE
2025 Challenge: Stereo Sound Event Localization and Detection in
Regular Video Content. The task requires predicting the activity,
azimuth, and distance of sound events using stereo audio. We par-
ticipate in the audio-only track. We propose a stereo SELD model
based on the ResNet-Conformer structure, integrating channel-wise
attention and feature fusion, with outputs represented in the AC-
CDOA format. To enhance model performance, we augment the
training data with additional stereo audio segments sampled from
the official DCASE 2024 synthetic dataset. We apply several data
augmentation techniques and adopt a two-stage training strategy to
improve generalization and performance on real data. A dynamic
thresholding method is also introduced during inference to further
boost the prediction accuracy. The experimental results on the of-
ficial development dataset show that our proposed system outper-
forms the baseline in all evaluation metrics.

Index Terms— Sound event localization and detection, Source
distance estimation, Stereo audio, Feature fusion, Training strategy

1. INTRODUCTION

Sound Event Localization and Detection with stereo audio data (re-
ferred to as stereo SELD) aims to perform Sound Event Detection
(SED), Direction of Arrival Estimation (DOAE), and Source Dis-
tance Estimation (SDE) simultaneously using two-channel stereo
audio. The SELD task was first introduced in the DCASE 2019
Challenge [1, 2], with the goal of jointly estimating the activity sta-
tus and the direction of incoming sound events. In subsequent chal-
lenges [3], distance estimation was incorporated to enable a more
comprehensive modeling of sound events, accompanied by the re-
lease of both real and synthetic datasets. SELD systems based on
First-Order Ambisonics (FOA) or microphone array (MIC) audio
formats have shown strong potential in practical applications such
as machine listening, smart home systems, and wildlife monitoring.

In [4], a CRNN-based SELD model with two parallel output
branches is proposed: one for SED and the other for DOAE, where
the SED output serves as a soft mask to inform the DOA predic-
tions. In [5], the Event-Independent Network V2 (EINV2) was
introduced, which employs soft parameter sharing and multi-head
self-attention (MHSA) to decode SELD outputs.

In [6], the Activity-Coupled Cartesian Direction of Arrival
(ACCDOA) representation was proposed, where the sound event
activity is assigned to the magnitude of the corresponding Cartesian

DOA vector. As a result, the SED and DOA tasks are combined into
a single regression task in Cartesian coordinates.However, the AC-
CDOA representation cannot handle the case of simultaneous oc-
currence of similar events. To address this issue, the ACCDOA rep-
resentation was extended to Multi-ACCDOA by introducing Auxil-
iary Duplicating Permutation Invariant Training (ADPIT) [7].

To incorporate distance estimation, [8] proposed extended AC-
CDOA and extended Multi-ACCDOA formats. In this framework,
sound event detection and localization are handled by the ACCDOA
branch, while sound source distance estimation (SDE) is performed
by a category-wise distance branch. Another solution is a unified
approach, where the distance and direction information are em-
bedded in a single output vector by extending the Multi-ACCDOA
representation. In [9], three output structures were proposed for
SELD models, along with three training strategies: (1) indepen-
dently training two models for SED-DOA and SED-SDE estima-
tion; (2) merging DOA and distance estimation into a unified Source
Coordinate Estimation (SCE) task and training an SED-SCE model;
and (3) directly using a three-branch model (SED-DOA-SDE) for
joint training.

In previous DCASE SELD challenges, spatial audio was usu-
ally provided in four-channel formats such as FOA and MIC. This
year, the challenge introduced a new input format—Mid/Side (M/S)
stereo audio—where only two channels are used to perform SED,
DOAE, and SDE.

In this technical report, we propose Stereo-RCnet, a stereo
SELD framework that leverages channel-wise self-attention and
feature fusion to effectively capture inter-channel spatial cues.
The model adopts a ResNet-Conformer backbone to achieve SED,
DOAE, and SDE simultaneously using two-channel stereo input. To
further enhance performance, a post-processing strategy is applied
to refine the model outputs.

To improve robustness and generalization, we apply several
data augmentation techniques and incorporate external data, as per-
mitted by the challenge rules. Specifically, we augment the train-
ing set with 90,000 five-second stereo audio clips sampled from the
official DCASE 2024 synthetic dataset, adding approximately 125
hours of audio. This allows the model to learn from a wider range
of spatial and temporal variations.

To mitigate the domain gap between real and synthetic data, we
adopt a two-stage training strategy: the model is first trained on the
combined dataset and then fine-tuned using real recordings only.
Experimental results on the official development set demonstrate
that our proposed method yields substantial improvements over the
official audio-only baseline across all evaluation metrics.
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Figure 1: Architecture of the proposed Stereo-RCnet. (a) The overall framework, including stereo-channel feature extraction, fusion, and
context modeling. (b) Structure of the Multi-Channel Self-Attention (MCSA). (c) Structure of the Attention Feature Fusion (AFF).

2. PROPOSED METHOD

2.1. Input Features

We first apply the Short-Time Fourier Transform (STFT) to 24 kHz
stereo audio signals using a 40-ms Hanning window, a 20-ms hop
size, and a 1024-point DFT. From the resulting spectrograms, we
extract 64-dimensional log-Mel features for each channel. As a
result, each 5-second stereo audio clip is represented as a feature
tensor of size 2× 251× 64, which serves as the input to our model.

2.2. Network Architecture

The proposed Stereo-RCnet aims to enhance sound event local-
ization and detection by fully leveraging the spatial cues embed-
ded in stereo audio signals. The overall architecture is illustrated in
Fig. 1(a).

Specifically, log-Mel features extracted from the stereo audio
are fed into a shared-weight backbone, MCSAnet, for local fea-
ture extraction. MCSAnet is built upon a ResNet backbone and
incorporates Multi-Channel Self-Attention (MCSA) module [10],
as illustrated in Fig. 1(b), to enhance the modeling of inter-channel
dependencies and time-frequency representations. As suggested by
[11], only frequency pooling is applied within MCSAnet to preserve
fine-grained temporal resolution.

The extracted features from both channels are then fused using
an Attentional Feature Fusion (AFF) module [10], as illustrated in
Fig. 1(c). This module integrates an internal MCSA module that dy-
namically adjusts fusion weights based on the relative importance of
the left and right channel features, thereby facilitating more effec-
tive inter-channel feature integration. The fused feature is computed
as:

Ffused = w · Fleft + (2− w) · Fright, (1)

where w is the weight generated by the MCSA module.

The fused feature is first passed through an embedding layer to
obtain a hidden representation for each time frame. To better model
the temporal dynamics of sound events—where temporal correla-
tion often decays with increasing time lag—we incorporate tem-
poral positional encoding (T-Encoding) after the embedding layer,
which is implemented using the fixed (non-learnable) sinusoidal en-
coding. This process is formulated as:

H = Embed(Ffused) +P, (2)

where P denotes the T-Encoding.
This enriched representation is then fed into a stack of Con-

former layers [12], which combine convolutional and self-attention
mechanisms to effectively model both local and global temporal
dependencies. This architecture enables the network to capture
long-range contextual information while retaining precise tempo-
ral alignment, which is crucial for accurate event localization and
detection.

Finally, temporal pooling (T-Pooling) is applied to the hidden
representations H, followed by a fully connected (FC) layer to pro-
duce the final prediction in the ACCDOA format, enabling joint
sound event detection and localization.

ŷACCDOA = FC(T-Pooling(H)), (3)

It is worth noting that although the ACCDOA output format
cannot effectively handle overlapping sound events from the same
class, we adopt it in this work due to its simpler output structure
and training stability. Therefore, we do not adopt more complex
output structures, such as the multi-track format Multi-ACCDOA
or multi-branch output architectures.

2.3. Loss Function Design

To better train the model, we slightly modify the loss functions used
in the official baseline. Specifically, we adopt the Mean Squared
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Error (MSE) and the Mean Squared Percentage Error (MSPE) as
our loss functions for DOA and distance estimation, respectively.
The formulations are defined as follows:

LDOA =
1

CT

∑
c,t

∥∥∥Rct − R̂ct

∥∥∥2

, (4)

Ldist =
1

CT

∑
c,t

∥∥∥∥∥act ·
dct − d̂ct

dct

∥∥∥∥∥
2

, (5)

where, Rct and R̂ct denote the ground-truth and predicted DOA
vectors for class c at time frame t, respectively. act is the ground-
truth activity indicator (1 for active, 0 for inactive), dct and d̂ct rep-
resent the ground-truth and predicted distances. C is the number
of sound event classes, and T is the number of time frames. ∥ · ∥2
denotes the squared Euclidean norm. The predicted activity indica-
tor âct is inferred from the magnitude of the predicted DOA vector
R̂ct. All classes use a fixed activity threshold of 0.5 during training.

Accordingly, the overall loss function of the proposed stereo
SELD model is formulated as follows:

Lstereo SELD = αLDOA + βLdist, (6)

where α and β are hyperparameters that control the relative weights
of the DOA and distance loss terms. In our implementation, we set
α = 1 and β = 2.

2.4. Data Augmentation

At the early stage of the challenge, the organizers released a de-
velopment dataset consisting of 30,000 stereo audio segments from
real recordings, among which 16,214 segments (approximately 22
hours) were designated for training and 13,786 segments (approxi-
mately 19 hours) for validation. However, this real dataset suffers
from an evident class imbalance, which may hinder model general-
ization.

Due to the class imbalance in the real audio dataset, we sampled
additional synthetic stereo audio segments to improve model gener-
alization ability and performance. First, we obtained the 20-hour of-
ficial synthetic dataset from DCASE 2024 Task 3 [3]. The synthetic
audio is in FOA format and was generated using the Spatial Scaper
library [13], with sound samples drawn from the FSD50K dataset
[14] and spatial room impulse responses (SRIR) [15]. Following
the official stereo synthesis procedure, we sampled approximately
90,000 five-second stereo audio clips from the 20-hour FOA format
data, resulting in about 125 hours of training data, which was used
to augment the development set.

More specifically, for FOA signals following an ACN/SN3D
convention ordered as [W (n), Y (n), Z(n), X(n)], the correspond-
ing stereo signals [L(n), R(n)] are derived using the following lin-
ear transformation:

L(n) = W (n) + Y (n), R(n) = W (n)− Y (n)

To enhance model robustness, we also applied several data aug-
mentation techniques during training, including random cutout [16],
time-frequency masking [17], frequency shifting [18], and AugMix
[19].

2.5. Two-stage training strategy

To mitigate the distributional discrepancy between synthetic and
real audio data, we employ a two-stage training strategy to improve
the model’s robustness in real scenarios. In the first stage, the model
is trained on a mixture of synthetic and real recordings for 20 epochs
with an initial learning rate of 1 × 10−4. In the second stage, fine-
tuning is performed exclusively on the real dataset with a reduced
learning rate of 2× 10−5, until validation performance plateaus for
20 consecutive epochs.

Compared to training solely on real data, this two-stage train-
ing strategy allows the model to first learn generalizable acous-
tic patterns from a larger and more diverse synthetic dataset, and
then adapt to the nuances of real-world environments through fine-
tuning. This strategy improves generalization without sacrificing
performance in realistic acoustic conditions.

2.6. Post-processing

During inference, We adopt a post-processing strategy, referred to
as dynamic threshold (DT), to further enhance the performance of
the trained model. Instead of using a fixed default threshold (typ-
ically set to 0.5), we apply class-specific decision thresholds for
different sound event categories in the SED task.

3. RESULTS ON DEVELOPMENT DATASET

We evaluate our proposed stereo SELD model on the official devel-
opment dataset, and the experimental results are presented in Table
1. ”Baseline-A” refers to the official audio-only baseline system
[20, 21]. “Stage 1” indicates the model performance after training
on the combined synthetic and real dataset. “Stage 2” shows the
results after further fine-tuning on the real dataset. “Stage 2 + PP”
represents the final performance obtained by applying the DT post-
processing method on top of Training Stage 2.

Table 1: Experimental results of the audio-only stereo SELD sys-
tems on the development dataset.

System F20◦ ↑ DOAECD ↓ RDECD ↓

Baseline-A 22.78% 24.5◦ 0.41
Stage 1 34.56% 16.5◦ 0.36
Stage 2 41.32% 14.9◦ 0.30
Stage 2 + PP 42.5% 15.0◦ 0.30

As shown in Table 1, our method achieves substantial improve-
ments over the baseline across all three evaluation metrics. Stage
1 training, which leverages both real and synthetic data, raises the
F20◦ from 22.78% to 34.56% and reduces the DOAECD from 24.5°
to 16.5°, demonstrating the effectiveness of incorporating synthetic
data for representation learning.

Stage 2 further improves performance through fine-tuning on
real data, increasing the F20◦ to 41.32%, reducing the DOAECD to
14.9°, and lowering the RDECD to 0.30. These results confirm the
advantage of our two-stage training strategy in adapting the model
to real spatial distributions.

Finally, applying DT post-processing in Stage 2 + PP slightly
improves the F20◦ to 42.5%, while maintaining the same low lo-
calization and distance errors. This indicates that the DT post-
processing contributes to improving the model’s accuracy in SED.
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4. CONCLUSION

In this paper, we propose Stereo-RCnet, a stereo sound event lo-
calization and detection method based on feature fusion and a two-
stage training strategy. The model leverages stereo channel infor-
mation and employs a Multi-Channel Self-Attention (MSCA) mod-
ule together with an Attentional Feature Fusion (AFF) module to
effectively model inter-channel spatial differences. For temporal
modeling, a stack of Conformer layers with temporal positional en-
coding is used to capture long-range contextual dependencies. Fur-
thermore, we adopt a combined training scheme using both syn-
thetic and real data, along with a dynamic threshold (DT) post-
processing method to enhance model generalization and detection
accuracy in real-world environments. Experimental results show
clear improvements over the baseline, validating the effectiveness
of our approach.
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